Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Emerg Infect Dis ; 26(2): 298-306, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961293

RESUMO

Hand, foot and mouth disease (HFMD) is an emerging infection with pandemic potential. Knowledge of neutralizing antibody responses among its pathogens is essential to inform vaccine development and epidemiologic research. We used 120 paired-plasma samples collected at enrollment and >7 days after the onset of illness from HFMD patients infected with enterovirus A71 (EV-A71), coxsackievirus A (CVA) 6, CVA10, and CVA16 to study cross neutralization. For homotypic viruses, seropositivity increased from <60% at enrollment to 97%-100% at follow-up, corresponding to seroconversion rates of 57%-93%. Seroconversion for heterotypic viruses was recorded in only 3%-23% of patients. All plasma samples from patients infected with EV-A71 subgenogroup B5 could neutralize the emerging EV-A71 subgenogroup C4. Collectively, our results support previous reports about the potential benefit of EV-A71 vaccine but highlight the necessity of multivalent vaccines to control HFMD.


Assuntos
Anticorpos Neutralizantes/imunologia , Enterovirus/imunologia , Doença de Mão, Pé e Boca/epidemiologia , Criança , Pré-Escolar , Feminino , Doença de Mão, Pé e Boca/sangue , Doença de Mão, Pé e Boca/prevenção & controle , Doença de Mão, Pé e Boca/virologia , Humanos , Lactente , Recém-Nascido , Masculino , Vietnã/epidemiologia , Vacinas Virais
2.
Emerg Infect Dis ; 25(4): 788-791, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882309

RESUMO

We investigated enterovirus A71-associated hand, foot and mouth disease in Vietnam and found that, after replacing subgenogroup C4 in 2013, B5 remained the leading cause of this disease. In contrast with previous observations, this switch did not result in an explosive outbreak, and B5 evolution was driven by negative selection.


Assuntos
Enterovirus Humano A/genética , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Vietnã/epidemiologia
3.
Virol J ; 12: 85, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26050791

RESUMO

BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response. METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients. RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed. CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.


Assuntos
Infecções por Enterovirus/diagnóstico , Enterovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Ásia , Criança , Pré-Escolar , Enterovirus/classificação , Enterovirus/genética , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex/normas , Faringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Reto/virologia , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
4.
Cureus ; 14(3): e22787, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382176

RESUMO

Objective In this study, we aimed to examine the topical anatomic landmarks of the facial nerve (facial nerve areas) and their application in cases of extratemporal facial nerve injury in maxillofacial trauma. Materials and methods We analyzed 25 maxillofacial trauma patients with facial paralysis who underwent facial nerve reanimation surgery at the Ho Chi Minh City National Hospital of Odonto-Stomatology. The characteristics of each trauma case, including the mechanism of injury, the length of the facial injury, and the location/position of injury, were recorded. The association of the injured nerves with the trauma characteristics and the external landmarks of the facial danger zones was analyzed. Results The buccal branches had the highest rate of paralysis (22/25 cases), followed by zygomatic branches (15/25), frontal branches (11/25), marginal branches (6/25), and the main trunk (1/25). There were four areas related to the external facial nerve landmarks (facial nerve areas) that helped us find the affected nerves: wounds in Area 1 resulted in frontal branch paralysis in five out of eight cases (62.5%); wounds in Area 2 resulted in zygomatic branch paralysis in 8/13 cases (61.5%) and buccal branch paralysis in 12/12 cases (100%); wounds in Area 3 resulted in marginal branch paralysis in 5/10 cases (50%); and wounds in Area 4 alone resulted in main trunk paralysis in one out of four cases or at least two main branches in three out of four cases. Conclusion Extratemporal facial paralysis after facial trauma can be complex and highly variable, leading to difficulty in finding and repairing facial nerves. Thorough clinical examination and evaluation of trauma characteristics can aid in the identification of facial paralysis and repair. Mapping facial wounds using the four anatomic surface landmarks (Areas 1-4 as outlined in this research) helped us anticipate which branches might be traumatized and estimate the position of the distal and proximal endings to repair the nerves in all cases.

5.
Anat Cell Biol ; 54(4): 409-416, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34620736

RESUMO

The incisive branch of the inferior alveolar nerve is a vital anatomical structure within the anterior mandible that has not been thoroughly defined and outlined in reports in the literature until recent years. Advances in radiological imaging, particularly the widespread use of cone-beam computed tomography has allowed for accurate visualization of the mandibular incisive canal (MIC) and its associated incisive branch of the inferior alveolar nerve. Surgical damage to the MIC, which could result in hemorrhage and sensory disturbance, may occur in commonly practiced oral and maxillofacial procedures, such as chin bone harvesting, implant placement, fracture repair and removal of pathologic entities of the anterior mandible. Knowledge of both the presence, dimensions and location of the incisive branch is a vital component to pre and peri-operative planning of oral and maxillofacial surgeries performed within the mandible, particularly within the interforaminal zone. In this article, the terminology, anatomy, imaging, surgical consideration, and pathology of the incisive branch will be discussed.

6.
Anat Cell Biol ; 53(4): 512-515, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-32814706

RESUMO

There are many reported anatomical variations of the mandibular canal. Consequently, there is great variation in the retromolar area, such as the quantity, size, and location of the retromolar foramen (RMF), the bony entrance of the retromolar canal (RMC). These variations allow for different accessory innervations to the mandibular molars and their adjacent buccal tissue because the RMC contains neurovascular bundles. Consideration of these anatomical variations is crucial for avoiding complications in anesthesia, implant placement, and surgery. However, the rarer canal types are often only imaged by computed tomography (CT) or cone beam computed tomography (CBCT). We present a rare case with bilateral RMF and a unilateral trifid mandibular canal in a cadaver.

7.
PLoS Negl Trop Dis ; 14(8): e0008544, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804980

RESUMO

Hand, foot and mouth disease (HFMD) continues to challenge Asia with pandemic potential. In Vietnam, there have been two major outbreaks occurring during 2011-2012 (>200,000 hospitalizations and >200 deaths) and more recently in 2018 (>130,000 hospitalizations and 17 deaths). Given the high burden and the complex epidemic dynamics of HFMD, synthesizing its clinical and epidemiological data remains essential to inform the development of appropriate interventions and design public health measures. We report the results of a hospital-based study conducted during 2015-2018, covering the severe HFMD outbreak recently documented in Vietnam in 2018. The study was conducted at three major hospitals responsible for receiving HFMD patients from southern Vietnam with a population of over 40 million. A total of 19 enterovirus serotypes were detected in 1196 HFMD patients enrolled in the clinical study during 2015-2018, with enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), CV-A10 and CV-A16 being the major causes. Despite the emergence of coxsackieviruses, EV-A71 remains the leading cause of severe HFMD in Vietnam. EV-A71 was consistently detected at a higher frequency during the second half of the years. The emergence of EV-A71 subgenogroup C4 in late 2018 was preceded by its low activity during 2017-early 2018. Compared with EV-A71 subgenogroup B5, C4 was more likely to be associated with severe HFMD, representing the first report demonstrating the difference in clinical severity between subgenogroup C4 and B5, the two predominant EV-A71 subgenogroups causing HFMD worldwide. Our data have provided significant insights into important aspects of HFMD over four years (2015-2018) in Vietnam, and emphasize active surveillance for pathogen circulation remains essential to inform the local public health authorities in the development of appropriate intervention strategies to reduce the burden of this emerging infections. Multivalent vaccines are urgently needed to control HFMD.


Assuntos
Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/etiologia , Criança , Pré-Escolar , Surtos de Doenças , Enterovirus/isolamento & purificação , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/etiologia , Infecções por Enterovirus/virologia , Feminino , Doença de Mão, Pé e Boca/virologia , Humanos , Lactente , Masculino , Sorogrupo , Vietnã/epidemiologia
8.
J Virol Methods ; 215-216: 30-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704598

RESUMO

Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Genoma Viral , Doença de Mão, Pé e Boca/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pré-Escolar , Enterovirus Humano A/isolamento & purificação , Variação Genética , Humanos , Vietnã
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 1): 011901, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21405707

RESUMO

In several biologically relevant situations, cell locomotion occurs in polymeric fluids with Weissenberg number larger than 1. Here we present results of three-dimensional numerical simulations for the steady locomotion of a self-propelled body in a model polymeric (Giesekus) fluid at low Reynolds number. Locomotion is driven by steady tangential deformation at the surface of the body (the so-called squirming motion). In the case of a spherical squirmer, we show that the swimming velocity is systematically less than that in a Newtonian fluid, with a minimum occurring for Weissenberg numbers of order 1. The rate of work done by the swimmer always goes up compared to that occurring in the Newtonian solvent alone but is always lower than the power necessary to swim in a Newtonian fluid with the same viscosity. The swimming efficiency, defined as the ratio between the rate of work necessary to pull the body at the swimming speed in the same fluid and the rate of work done by swimming, is found to always be increased in a polymeric fluid. Further analysis reveals that polymeric stresses break the Newtonian front-back symmetry in the flow profile around the body. In particular, a strong negative elastic wake is present behind the swimmer, which correlates with strong polymer stretching, and its intensity increases with Weissenberg number and viscosity contrasts. The velocity induced by the squirmer is found to decay in space faster than in a Newtonian flow, with a strong dependence on the polymer relaxation time and viscosity. Our computational results are also extended to prolate spheroidal swimmers and smaller polymer stretching are obtained for slender shapes compared to bluff swimmers. The swimmer with an aspect ratio of two is found to be the most hydrodynamically efficient.


Assuntos
Movimento Celular , Modelos Biológicos , Polímeros/química , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA