Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Oral Investig ; 24(7): 2497-2511, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31728735

RESUMO

OBJECTIVES: The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS: CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS: In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION: Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE: Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.


Assuntos
Fibroblastos , Expressão Gênica , Ligamento Periodontal , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Estresse Mecânico , Técnicas de Movimentação Dentária
2.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120924

RESUMO

The periodontal ligament (PDL) is exposed to different kinds of mechanical stresses such as bite force or orthodontic tooth movement. A simple and efficient model to study molecular responses to mechanical stress is the application of compressive force onto primary human periodontal ligament fibroblasts via glass disks. Yet, this model suffers from the need for primary cells from human donors which have a limited proliferative capacity. Here we show that an immortalized cell line, PDL-hTERT, derived from primary human periodontal ligament fibroblasts exhibits characteristic responses to glass disk-mediated compressive force resembling those of primary cells. These responses include induction and secretion of pro-inflammatory markers, changes in expression of extracellular matrix-reorganizing genes and induction of genes related to angiogenesis, osteoblastogenesis and osteoclastogenesis. The fact that PDL-hTERT cells can easily be transfected broadens their usefulness, as molecular gain- and loss-of-function studies become feasible.


Assuntos
Técnicas de Cultura de Células/instrumentação , Ligamento Periodontal/citologia , Telomerase/metabolismo , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Vidro , Humanos , Modelos Biológicos , Ligamento Periodontal/metabolismo , Estresse Mecânico , Técnicas de Movimentação Dentária
3.
Injury ; 53 Suppl 3: S69-S73, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948509

RESUMO

Since ancient times, reduction and internal fixation has been applied to restore skeletal integrity. Despite advances in the understanding of fracture healing, the risk of complication such as implant loosening or implant-related infection still depicts a challenging complication. Nowadays, a great deal of research is devoted to unreveal the impact of implant surface modifications on osteogenic processes to enhance bone consolidation and osseointegration. This narrative review is aimed to (1) show the evolution and already achieved milestones of implant optimization, and (2) to outline the key factors that contribute to an enhanced osseointegration. Different physical and chemical roughening techniques are currently applied in various studies. Surface patterning on the nanoscale has been found to be an essential factor for the biological response, achievable by e.g. anodisation or laser texturing. Besides surface roughening, also different coating methods are vastly investigated. Next to metal or inorganic compounds as coating material, a variety of biomolecules is currently studied for their osteosupportive capacities. Osseointegration can be improved by surface modification on the micro and nanoscale. Bioactive agents can further improve the osseointegration potential. Used agents at the moment are e.g. inorganic compounds, growth factors (BMPs and non-BMPs) and antiresorptive drugs. The advancement in research on new implant generations therefore aims at actively supporting osseointegration processing.


Assuntos
Conservadores da Densidade Óssea , Osseointegração , Materiais Revestidos Biocompatíveis , Humanos , Osseointegração/fisiologia , Osteogênese , Próteses e Implantes , Propriedades de Superfície , Titânio/química
4.
Bioeng Transl Med ; 7(1): e10239, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079626

RESUMO

Titanium is commonly and successfully used in dental and orthopedic implants. However, patients still have to face the risk of implant failure due to various reasons, such as implant loosening or infection. The risk of implant loosening can be countered by optimizing the osteointegration capacity of implant materials. Implant surface modifications for structuring, roughening and biological activation in favor for osteogenic differentiation have been vastly studied. A key factor for a successful stable long-term integration is the initial cellular response to the implant material. Hence, cell-material interactions, which are dependent on the surface parameters, need to be considered in the implant design. Therefore, this review starts with an introduction to the basics of cell-material interactions as well as common surface modification techniques. Afterwards, recent research on the impact of osteogenic processes in vitro and vivo provoked by various surface modifications is reviewed and discussed, in order to give an update on currently applied and developing implant modification techniques for enhancing osteointegration.

5.
Injury ; 53(10): 3446-3457, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35851476

RESUMO

INTRODUCTION: In chronic bone infection, marginal bone resection avoids large and difficult to reconstruct bone defects. However, there is still a lack of knowledge on bone regeneration during chronic bone infection and bone healing capability after marginal bone resection. Therefore, the purpose of this study was to investigate the clinical and histopathological outcomes after marginal bone resection in chronic long bone infection. We hypothesized that there is a regenerative bone healing potential after marginal bone resection that results in an acceptable clinical outcome and improved pathohistological bone healing parameters during treatment. MATERIALS AND METHODS: Nine patients were treated for chronic bone infections in a two-stage manner with marginal bone resection of the infected area and the placement of an antibiotic-loaded polymethyl methacrylate (PMMA) spacer at stage one followed by bone reconstruction at stage two combined with systemic antibiotic therapy. Comparable bone samples were harvested at the border region between vital and necrotic bone area during stage one and the identical location during stage two. Control bone samples were harvested from five healthy patients without bone infection. Clinical outcome in terms of infection eradication and bone consolidation were assessed. The phenotypic changes of osteocyte and morphological changes of lacunar-canalicular network were investigated by histological and immunohistochemical staining between the two observation periods. Furthermore, expression levels of major bone formation and resorption markers were investigated by immunohistochemical and tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: The clinical results with a follow-up of 12.9 months showed that eight of nine patients (88.9%) achieved bone consolidation after a planned two-stage procedure of marginal resection of necrotic bone and consecutive reconstruction. In four of the nine patients (44.4%), additional marginal debridements after stage two had to be performed. After marginal resection at stage one, the improved bone formation ability at stage two was demonstrated by significantly lower percentage of empty lacunae, significantly more mature osteocytes and higher BMP-2 positive cell density, whereas decreased resorption was indicated by significantly lower osteoclast density and RANKL/OPG ratio. In patients requiring additional debridement compared to patients without additional debridements, a significantly higher percentage of empty lacunae was found at stage one. CONCLUSION: Marginal bone resection combined with local and systemic antibiotic therapy is a feasible treatment option to avoid large bone defects as bone from the marginal resection area seems to have good regenerative potential. Despite a high revision rate of 44.4%, this technique avoids large bone resection and revisions can be done by further marginal debridements.


Assuntos
Osteomielite , Polimetil Metacrilato , Antibacterianos/uso terapêutico , Regeneração Óssea , Humanos , Osteomielite/tratamento farmacológico , Osteomielite/cirurgia , Projetos Piloto , Polimetil Metacrilato/uso terapêutico , Fosfatase Ácida Resistente a Tartarato
6.
Biomater Sci ; 9(4): 1237-1245, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33576754

RESUMO

The uniform and aligned arrangement of tendon cells is a marker of tendon tissue morphology and the embodiment of its biological anisotropy. However, most of the hydrogels used for tendon tissue engineering do not present anisotropic structures. In this work, a magnetically-responsive nanocomposite hydrogel composed of collagen type I (COL I) and aligned iron oxide nanoparticles (IOPs) was investigated for potential application in tendon tissue engineering. COL I with a mixture of remotely aligned IOPs (A/IOPs) and human tendon stem/progenitor cells (COL I-A/IOPs-hTSPCs) was prepared and the alignment of IOPs was induced under a remote magnetic field. Following the gelation of COL I, a stable and anisotropic nanocomposite COL I-A/IOPs hydrogel was formed. In addition, hTSPCs embedded in COL I with random IOPs (COL I-R/IOPs-hTSPCs) and in pure COL I (COL I-hTSPCs) were used as control groups. Cell viability, proliferation, morphology, cell row formation, and alignment of IOPs and hTSPCs were evaluated over time. In addition, a comprehensive gene expression profile of 48 different genes, including tendon-related genes and lineage/cross-linking genes, was obtained by implementing designer quantitative RT-PCR plates. The hTSPCs morphology followed the orientation of the anisotropic COL I-A/IOPs hydrogel with increased row formation in comparison to pristine COL I and COL-R/IOPs. Moreover, higher proliferation rate and significant upregulation of tendon gene markers were measured in comparison to hTSPCs cultivated in the COL I-R/IOPs and COL I. Thus, we suggest that providing the cells with aligned focal contact points, namely the aligned IOPs, is sufficient to provoke an immense effect on the formation of aligned cell rows. Taken together, we report a novel strategy for directing stem cell behavior without the use of exogenous growth factors or pre-aligned COL I fibers, and propose that anisotropic nanocomposite hydrogels hold great potential for tendon tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Anisotropia , Humanos , Nanogéis , Células-Tronco , Tendões
7.
Eur Cell Mater ; 20: 344-55, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21154241

RESUMO

Mechanical forces are translated into biochemical signals and contribute to cell differentiation and phenotype maintenance. Mesenchymal stem cells and their tissue-specific offspring, as osteoblasts and chondrocytes, cells of cardiovascular tissues and lung cells are sensitive to mechanical loading but molecules and mechanisms involved have to be unraveled. It is well established that cellular mechanotransduction is mediated e.g. by activation of the transcription factor SP1 and by kinase signaling cascades resulting in the activation of the AP1 complex. To investigate cellular mechanisms involved in mechanotransduction and to analyze substances, which modulate cellular mechanosensitivity reporter gene constructs, which can be transfected into cells of interest might be helpful. Suitable small-scale bioreactor systems and mechanosensitive reporter gene constructs are lacking. To analyze the molecular mechanisms of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching to the transfected cells. 1 Hz cyclic stretching for 30 min in this system resulted in a significant stimulation of AP1 and SP1 mediated luciferase activity compared to unstimulated cells. In summary we describe a small-scale cell culture/bioreactor system capable of analyzing subcellular crosstalk mechanisms in mechanotransduction, mechanosensitivity of primary cells and of screening the activity of putative mechanosensitizers as new targets, e.g. for the treatment of bone loss caused by both disuse and signal transduction related alterations of mechanotransduction.


Assuntos
Técnicas de Cultura de Células , Genes Reporter , Luciferases/biossíntese , Mecanotransdução Celular , Poliuretanos , Reatores Biológicos , Proteínas de Transporte/biossíntese , Adesão Celular , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Proliferação de Células , Citocinas/biossíntese , Análise de Elementos Finitos , Humanos , Luciferases/genética , Células-Tronco Mesenquimais/fisiologia , Proteínas Recombinantes/biossíntese , Elementos de Resposta , Fator de Transcrição Sp1/genética , Estresse Fisiológico/genética , Fator de Transcrição AP-1/genética
8.
PLoS One ; 15(8): e0237116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857787

RESUMO

Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D's role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.


Assuntos
Calcificação Fisiológica , Adesão Celular , Neoplasias da Próstata/metabolismo , Animais , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Colágeno/metabolismo , Citoesqueleto/metabolismo , Dentina/química , Elefantes , Humanos , Masculino , Receptores de Superfície Celular/metabolismo , Alicerces Teciduais/química , Vitamina D/metabolismo
9.
Stem Cells Int ; 2018: 3208285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154862

RESUMO

Cells from the mesenchymal lineage in the dental area, including but not limited to PDL fibroblasts, osteoblasts, and dental stem cells, are exposed to mechanical stress in physiological (e.g., chewing) and nonphysiological/therapeutic (e.g., orthodontic tooth movement) situations. Close and complex interaction of these different cell types results in the physiological and nonphysiological adaptation of these tissues to mechanical stress. Currently, different in vitro loading models are used to investigate the effect of different types of mechanical loading on the stress adaptation of these cell types. We performed a systematic review according to the PRISMA guidelines to identify all studies in the field of dentistry with focus on mechanobiology using in vitro loading models applying uniaxial static compressive force. Only studies reporting on cells from the mesenchymal lineage were considered for inclusion. The results are summarized regarding gene expression in relation to force duration and magnitude, and the most significant signaling pathways they take part in are identified using protein-protein interaction networks.

10.
Biomed Mater ; 13(3): 034107, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29417934

RESUMO

Thermosensitive hydrogels have been studied for potential application as promising alternative cell carriers in cell-based regenerative therapies. In this study, a thermosensitive butane diisocyanate (BDI)-collagen hydrogel (BC hydrogel) was designed as an injectable cell delivery carrier of tendon stem/progenitor cells (TSPCs) for tendon tissue engineering. We functionalized the BDI hydrogel with the addition of 20% (v/v) collagen I gel to obtain the thermosensitive BC hydrogel, which was then seeded with TSPCs derived from human Achilles tendons. The BC hydrogel compatibility and TSPC behavior and molecular response to the 3D hydrogel were investigated. Collagen (COL) I gel served as a control group. Our findings demonstrated that the BC hydrogel was thermosensitive, and hardened above 25 °C. It supported TSPC survival, proliferation, and metabolic activity with satisfactory dimension stability and biocompatibility, as revealed by gel contraction assay, live/dead staining, DNA quantification, and resazurin metabolic assay. Phalloidin-based visualization of F-actin demonstrated that the TSPCs were stretched within COL I gel with classical spindle cell shapes; similar cell morphologies were also found in the BC hydrogel. The gene expression profile of TSPCs in the BC hydrogel was comparable with that in COL I gel. Moreover, the BC hydrogel supported capillary-like structure formation by human umbilical vein endothelial cells (HUVECs) in the hydrogel matrix. Taken together, these results suggest that the thermosensitive BC hydrogel holds great potential as an injectable cell delivery carrier of TSPCs for tendon tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Transplante de Células/instrumentação , Hidrogéis/química , Células-Tronco/citologia , Tendões/citologia , Tendões/cirurgia , Engenharia Tecidual/métodos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Actinas/química , Apoptose , Sítios de Ligação , Proliferação de Células , Sobrevivência Celular , Transplante de Células/métodos , Colágeno/química , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Permeabilidade , Temperatura , Alicerces Teciduais
11.
Adv Drug Deliv Rev ; 84: 222-39, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25446135

RESUMO

Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Terapia Genética/métodos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Tendões/fisiologia , Materiais Biocompatíveis/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Regeneração/efeitos dos fármacos , Tendões/efeitos dos fármacos
12.
PLoS One ; 8(3): e57706, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472100

RESUMO

Adhesion of metastasizing prostate carcinoma cells was quantified for two carcinoma model cell lines LNCaP (lymph node-specific) and PC3 (bone marrow-specific). By time-lapse microscopy and force spectroscopy we found PC3 cells to preferentially adhere to bone marrow-derived mesenchymal stem cells (SCP1 cell line). Using atomic force microscopy (AFM) based force spectroscopy, the mechanical pattern of the adhesion to SCP1 cells was characterized for both prostate cancer cell lines and compared to a substrate consisting of pure collagen type I. PC3 cells dissipated more energy (27.6 aJ) during the forced de-adhesion AFM experiments and showed significantly more adhesive and stronger bonds compared to LNCaP cells (20.1 aJ). The characteristic signatures of the detachment force traces revealed that, in contrast to the LNCaP cells, PC3 cells seem to utilize their filopodia in addition to establish adhesive bonds. Taken together, our study clearly demonstrates that PC3 cells have a superior adhesive affinity to bone marrow mesenchymal stem cells, compared to LNCaP. Semi-quantitative PCR on both prostate carcinoma cell lines revealed the expression of two Col-I binding integrin receptors, α1ß1 and α2ß1 in PC3 cells, suggesting their possible involvement in the specific interaction to the substrates. Further understanding of the exact mechanisms behind this phenomenon might lead to optimized therapeutic applications targeting the metastatic behavior of certain prostate cancer cells towards bone tissue.


Assuntos
Células da Medula Óssea/citologia , Colágeno Tipo I/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Humanos , Imuno-Histoquímica , Integrinas/metabolismo , Masculino , Microscopia de Força Atômica , Metástase Neoplásica , Poliestirenos/química , Pseudópodes/metabolismo
13.
PLoS One ; 8(4): e60203, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593173

RESUMO

Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain.


Assuntos
Adesão Celular/fisiologia , Proteínas de Membrana/fisiologia , Ligamento Periodontal/metabolismo , Animais , Linhagem Celular Transformada , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3
14.
Tissue Eng Part A ; 16(2): 513-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19715388

RESUMO

Scaffold-free cultures provide promising potential in chondrogenic differentiation of human mesenchymal stem cells (hMSCs). In this study, a novel scaffold-free membrane-based culture system, in which hMSCs were cultivated on a cellulose acetate membrane filter at medium-gas interface, was evaluated for chondrogenesis under the addition of growth factors. Chondrogenic differentiation of hMSCs has been described in scaffold-free pellet cultures with good results. In our study membrane-based cultures (1 x 10(6) hMSCs) were produced, maintained at the medium-gas interface and cultured for 21 days. Results were compared with findings from standard pellet cultures (2.5 x 10(5) hMSCs). The effects of the following growth factors were examined: human transforming growth factor-beta(3) (TGF-beta(3)) +/- insulin-like growth factor-1 or +/- human fibroblast growth factor 2. After 3 weeks of culture, chondrogenesis was assessed by Safranin-O staining, immunohistochemistry, a dimethylmethylene blue dye binding assay for glycosaminoglycans, and quantitative real-time polymerase chain reaction for cartilage-specific proteins. Membrane-based cultures containing growth factors formed hemispherical structures with a large surface area (65 mm(2)). When removed from the membrane they showed a histologically smooth cartilage-like surface. Membrane-based cultures stained positive for Safranin-O and collagen type II and contained a high content of glycosaminoglycans. Expression of cartilage-specific markers like collagen type II, aggrecan, and SOX9 was observed under the addition of TGF-beta(3), whereas combinations of growth factors let to a significant increase of collagen type II expression. A markedly reduced expression of collagen type X was found in membrane-based cultures when only TGF-beta(3) was added. Pellet cultures showed similar results besides an increased expression of collagen type X and type II that were observed. Membrane-based cultures provide a differentiation system, comparable in chondrogenesis to pellet cultures, which is able to generate scaffold-free neocartilage. The key benefit factors of membrane-based cultures are a histologically smooth cartilage-like surface and reduced expression of collagen type X, both of which are suitable features for its future application in cartilage regeneration.


Assuntos
Cartilagem/metabolismo , Técnicas de Cultura de Células/métodos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Membranas Artificiais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adulto , Cartilagem/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/farmacologia
15.
J Gene Med ; 9(7): 585-95, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17510916

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.


Assuntos
Lentivirus/genética , Lentivirus/isolamento & purificação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Reação em Cadeia da Polimerase/métodos , Transdução Genética , Antígenos Virais/análise , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Resistência a Medicamentos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/metabolismo , Brometo de Hexadimetrina/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Plasmídeos , Pirrolidinonas/farmacologia , Transgenes , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA