Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2309164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175832

RESUMO

Attempts are made to design a system for sustaining the delivery of copper ions into diabetic wounds and induce angiogenesis with minimal dose-dependent cytotoxicity. Here, a dual drug-delivery micro/nanofibrous core-shell system is engineered using polycaprolactone/sodium sulfated alginate-polyvinyl alcohol (PCL/SSA-PVA), as core/shell parts, by emulsion electrospinning technique to optimize sustained delivery of copper oxide nanoparticles (CuO NP). Herein, different concentrations of CuO NP (0.2, 0.4, 0.8, and 1.6%w/w) are loaded into the core part of the core-shell system. The morphological, biomechanical, and biocompatibility properties of the scaffolds are fully determined in vitro and in vivo. The 0.8%w/w CuO NP scaffold reveals the highest level of tube formation in HUVEC cells and also upregulates the pro-angiogenesis genes (VEGFA and bFGF) expression with no cytotoxicity effects. The presence of SSA and its interaction with CuO NP, and also core-shell structure sustain the release of the nanoparticles and provide a non-toxic microenvironment for cell adhesion and tube formation, with no sign of adverse immune response in vivo. The optimized scaffold significantly accelerates diabetic wound healing in a rat model. This study strongly suggests the 0.8%w/w CuO NP-loaded PCL/SSA-PVA as an excellent diabetic wound dressing with significantly improved angiogenesis and wound healing.


Assuntos
Cobre , Células Endoteliais da Veia Umbilical Humana , Nanofibras , Cicatrização , Cobre/química , Cicatrização/efeitos dos fármacos , Animais , Nanofibras/química , Humanos , Emulsões/química , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Alicerces Teciduais/química , Ratos , Nanopartículas/química , Masculino , Ratos Sprague-Dawley , Poliésteres/química , Angiogênese
2.
Biomacromolecules ; 17(4): 1321-9, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26902925

RESUMO

Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Silicones/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxiciclina/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/química , Impressão Tridimensional
3.
Biomater Adv ; 161: 213869, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718714

RESUMO

Considering the global burden related to tissue and organ injuries or failures, self-healing hydrogels may be an attractive therapeutic alternative for the future. Self-healing hydrogels are highly hydrated 3D structures with the ability to self-heal after breaking, this property is attributable to a variety of dynamic non-covalent and covalent bonds that are able to re-linking within the matrix. Self-healing ability specially benefits minimal invasive medical treatments with cell-delivery support. Moreover, those tissue-engineered self-healing hydrogels network have demonstrated effectiveness for myriad purposes; for instance, they could act as delivery-platforms for different cargos (drugs, growth factors, cells, among others) in tissues such as bone, cartilage, nerve or skin. Besides, self-healing hydrogels have currently found their way into new and novel applications; for example, with the development of the self-healing adhesive hydrogels, by merely aiding surgical closing processes and by providing biomaterial-tissue adhesion. Furthermore, conductive hydrogels permit the stimuli and monitoring of natural electrical signals, which facilitated a better fitting of hydrogels in native tissue or the diagnosis of various health diseases. Lastly, self-healing hydrogels could be part of cyborganics - a merge between biology and machinery - which can pave the way to a finer healthcare devices for diagnostics and precision therapies.


Assuntos
Hidrogéis , Medicina Regenerativa , Engenharia Tecidual , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Animais
4.
J Colloid Interface Sci ; 667: 54-63, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38615623

RESUMO

Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.


Assuntos
Alginatos , Gelatina , Hidrogéis , Células Secretoras de Insulina , Fator A de Crescimento do Endotélio Vascular , Hidrogéis/química , Alginatos/química , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Gelatina/química , Animais , Poliésteres/química , Ratos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Diabetes Mellitus Tipo 1/terapia , Metacrilatos/química , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/administração & dosagem , Propriedades de Superfície
5.
ACS Biomater Sci Eng ; 10(2): 800-813, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38159039

RESUMO

Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Nitritos , Elementos de Transição , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Condutividade Elétrica , Sobrevivência Celular , Gelatina/química , Metacrilatos/química , Metacrilatos/farmacologia
6.
Biomater Adv ; 146: 213274, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640523

RESUMO

Bone tissue engineering (BTE) is constantly seeking novel treatments to address bone injuries in all their varieties. It is necessary to find new ways to create structures that perfectly emulate the native tissue. Self-healing hydrogels have been a breakthrough in this regard, as they are able to reconstitute their links after they have been partially broken. Among the most outstanding biomaterials when it comes to developing these hydrogels for BTE, those polymers of natural origin (e.g., gelatin, alginate) stand out, although synthetics such as PEG or nanomaterials like laponite are also key for this purpose. Self-healing hydrogels have proven to be efficient in healing bone, but have also played a key role as delivery-platforms for drugs or other biological agents. Moreover, some researchers have identified novel uses for these gels as bone fixators or implant coatings. Here, we review the progress of self-healing hydrogels, which hold great promise in the field of tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Alicerces Teciduais , Osso e Ossos/cirurgia
7.
Int J Biol Macromol ; 249: 126023, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37506785

RESUMO

Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.


Assuntos
Gelatina , Alicerces Teciduais , Camundongos , Animais , Regeneração Óssea , Osteogênese , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Diferenciação Celular
8.
ACS Appl Mater Interfaces ; 15(10): 12735-12749, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854044

RESUMO

Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.


Assuntos
Ligamento Periodontal , Periodontite , Ratos , Animais , Alicerces Teciduais/química , Osso e Ossos , Osteogênese , Poliésteres/química , Periodontite/terapia , Engenharia Tecidual/métodos , Regeneração Óssea
9.
Expert Opin Biol Ther ; 22(4): 519-533, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34793282

RESUMO

INTRODUCTION: The development of wound dressing materials that combine healing properties, ability to self-repair the material damages, skin-friendly adhesive nature, and competent mechanical properties have surpassing functional importance in healthcare. Due to their specificity, hydrogels have been recognized as a new gateway in biological materials to treat dysfunctional tissues. The design and creation of injectable hydrogel-based scaffolds have extensively progressed in recent years to improve their therapeutic efficacy and to pave the way for their easy minimally invasive administration. Hence, injectable hydrogel biomaterials have been prepared to eventually translate into minimally invasive therapy and pose a lasting effect on regenerative medicine. AREAS COVERED: This review highlights the recent development of adhesive and injectable hydrogels that have applications in wound healing and wound dressing. Such hydrogel materials are not only expected to improve therapeutic outcomes but also to facilitate the easy surgical process in both wound healing and dressing. EXPERT OPINION: Wound healing seems to be an appealing approach for treating countless life-threatening disorders. With the average increase of life expectancy in human societies, an increase in demand for injectable skin replacements and drug delivery carriers for chronic wound healing is expected.


Assuntos
Adesivos , Hidrogéis , Adesivos/farmacologia , Materiais Biocompatíveis/farmacologia , Humanos , Pele , Cicatrização
10.
Acta Biomater ; 139: 118-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34455109

RESUMO

Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Ouro , Coração , Miocárdio , Engenharia Tecidual/métodos
11.
Adv Healthc Mater ; 11(20): e2201583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916145

RESUMO

Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Fármacos por Nanopartículas , Celulose , Portadores de Fármacos/química , Elastina , Sistemas de Liberação de Fármacos por Nanopartículas/química , Polímeros , Seda
12.
Int J Pharm ; 623: 121895, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35691524

RESUMO

Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.


Assuntos
Alginatos , Engenharia Tecidual , Alginatos/química , Materiais Biocompatíveis/química , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Hidrogéis/química , Osteogênese , Alicerces Teciduais/química
13.
Int J Pharm ; 602: 120595, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892060

RESUMO

Diabetes is a serious chronic disease, which globally affects more than 400 million patients. Beta cell therapy has potential to serve as an effective cure to type 1 diabetes and several studies have already shown promising results in this regard. One of the major obstacles in cell therapy, however, is the hypoxic environment that therapeutic cells are subjected to immediately after the transplantation. In this study, a new approach is presented, based on hydrogels composed of thiolated hyaluronic acid (tHA), 8-arm-Poly(ethylene glycol)-Acrylate (PEGA), and calcium peroxide (CPO) as an oxygen releasing system. Hydrogels containing 0, 7.5, and 30% CPO were prepared, and the presence of CPO was confirmed via FTIR and Alizarin Red within the network. Oxygen release kinetics were monitored over time, and the results revealed that the hydrogels containing 30% CPO could release oxygen for at least 30 h. All three combinations were found to be injectable and suitable for beta cell therapy based on their mechanical and rheological properties. Additionally, to investigate the functionality of the system, insulin secreting INS-1E reporter cell clusters were encapsulated, and their viability was evaluated, which showed that CPO incorporation enhanced cell survival for at least three days.


Assuntos
Hidrogéis , Células Secretoras de Insulina , Sobrevivência Celular , Humanos , Oxigênio , Polietilenoglicóis
14.
ACS Appl Mater Interfaces ; 13(49): 58434-58446, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34866391

RESUMO

In vitro small intestinal models aim to mimic the in vivo intestinal function and structure, including the villi architecture of the native tissue. Accurate models in a scalable format are in great demand to advance, for example, the development of orally administered pharmaceutical products. Widely used planar intestinal cell monolayers for compound screening applications fail to recapitulate the three-dimensional (3D) microstructural characteristics of the intestinal villi arrays. This study employs stereolithographic 3D printing to manufacture biocompatible hydrogel-based scaffolds with villi-like micropillar arrays of tunable dimensions in poly(ethylene glycol) diacrylates (PEGDAs). The resulting 3D-printed microstructures are demonstrated to support a month-long culture and induce apicobasal polarization of Caco-2 epithelial cell layers along the villus axis, similar to the native intestinal microenvironment. Transport analysis requires confinement of compound transport to the epithelial cell layer within a compound diffusion-closed reservoir compartment. We meet this challenge by sequential printing of PEGDAs of different molecular weights into a monolithic device, where a diffusion-open villus-structured hydrogel bottom supports the cell culture and mass transport within the confines of a diffusion-closed solid wall. As a functional demonstrator of this scalable dual-material 3D micromanufacturing technology, we show that Caco-2 cells seeded in villi-wells form a tight epithelial barrier covering the villi-like micropillars and that compound-induced challenges to the barrier integrity can be monitored by standard high-throughput analysis tools (fluorescent tracer diffusion and transepithelial electrical resistance).


Assuntos
Materiais Biocompatíveis/metabolismo , Hidrogéis/metabolismo , Intestino Delgado/metabolismo , Modelos Biológicos , Impressão Tridimensional , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Células CACO-2 , Células Cultivadas , Humanos , Hidrogéis/química , Intestino Delgado/química , Teste de Materiais , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo
15.
Adv Healthc Mater ; 10(16): e2100217, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185438

RESUMO

Nanoclay-reinforced biomaterials have sparked a new avenue in advanced healthcare materials that can potentially revolutionize treatment of musculoskeletal defects. Native tissues display many important chemical, mechanical, biological, and physical properties that engineered biomaterials need to mimic for optimal tissue integration and regeneration. However, it is time-consuming and difficult to endow such combinatorial properties on materials via feasible and nontoxic procedures. Fortunately, a number of nanomaterials such as graphene, carbon nanotubes, MXenes, and nanoclays already display a plethora of material properties that can be transferred to biomaterials through a simple incorporation procedure. In this direction, the members of the nanoclay family are easy to functionalize chemically, they can significantly reinforce the mechanical performance of biomaterials, and can provide bioactive properties by ionic dissolution products to upregulate cartilage and bone tissue formation. For this reason, nanoclays can become a key component for future orthopedic biomaterials. In this review, we specifically focus on the rapidly decreasing gap between clinic and laboratory by highlighting their application in a number of promising in vivo studies.


Assuntos
Materiais Biocompatíveis , Nanotubos de Carbono , Cartilagem , Hidrogéis , Engenharia Tecidual
16.
Adv Healthc Mater ; 9(1): e1901023, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778037

RESUMO

Living flesh, hacked beyond known biological borders, and sophisticated machineries, made by humans, are currently being united to address some of the impending challenges in medicine. Imagine biological systems made from smart biomaterials with the capacity to operate like smart machines to regulate insulin production in diabetic patients, or cardiac patches that can monitor and release important biological factors, on demand, to optimize the mending of broken hearts. It sounds like something from the realm of science fiction; however, this big gap between the real world and the world of fantasy and fiction is slowly being bridged. This piece sheds a much-needed light on this emerging area, as this futuristic concept is gaining momentum, at a speed, that soon will ignite a paradigm shift in disease management and the healthcare sector as an entirety.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Robótica , Materiais Biocompatíveis/química , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Diabetes Mellitus/terapia , Cardiopatias/terapia , Humanos , Engenharia Tecidual , Alicerces Teciduais/química
17.
Mater Sci Eng C Mater Biol Appl ; 106: 110259, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753381

RESUMO

Polymeric hydrogel-based 3D scaffolds are well-known structures, being used for cultivation and differentiation of stem cells. However, scalable systems that provide a native-like microenvironment with suitable biological and physical properties are still needed. Incorporation of nanomaterials into the polymeric systems is expected to influence the physical properties of the structure but also the stem cells fate. Here, alginate/gelatin hydrogel beads incorporated with mesoporous silica nanoparticles (MSNs) (average diameter 80.9 ±â€¯10 nm) and various surface chemistries were prepared. Human adipose-derived mesenchymal stem cells (hASCs) were subsequently encapsulated into the alginate/gelatin/silica hydrogels. Incorporation of amine- and carboxyl-functionalized MSNs (A-MSNs and C-MSNs) significantly enhances the stability of the hydrogel beads. In addition, the expression levels of Nanog and OCT4 imply that the incorporation of A-MSNs into the alginate/gelatin beads significantly improves the proliferation and the stemness of encapsulated hASCs. Importantly, our findings show that the presence of A-MSNs slightly suppresses in vivo inflammation. In contrast, the results of marker gene expression analyses indicate that cultivation of hASCs in alginate beads incorporated with C-MSNs (10% w/w) leads to a heterogeneously differentiated population of the cells, i.e., osteocytes, chondrocytes, and adipocytes, which is not appropriate for both cell culture and differentiation applications.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Nanopartículas/química , Dióxido de Silício/química , Tecido Adiposo/citologia , Alginatos/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Humanos , Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Porosidade , Ratos , Ratos Wistar , Alicerces Teciduais/química
18.
J Mater Chem B ; 8(19): 4340-4356, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32363370

RESUMO

One of the long-standing challenges in materials science involves synthesizing biomaterials that recapitulate important features of native biological tissues. Even though, the number of available biomaterials at the moment are virtually limitless, few of them has unlocked all the secrets of the human body by mimicking the combinatorial-like material properties of our tissues and organs. Inspired by the human body, we have developed a polymeric gum, which combines stretchability, toughness, strength, flexibility, and self-healing. It also exhibits a high bioactivity that can target and eliminate bacterial infections fast and reliably. Notably, this material is moldable into almost any complex shape, and therefore suitable as a building block for wearables designed to conform directly with the curved and personalized anatomy of patients. It also exhibits excellent drug retention and release capacity, which altogether makes it suitable for applications in personalized wearable drug-delivery devices.


Assuntos
Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Álcool de Polivinil/farmacologia , Taninos/farmacologia , Dispositivos Eletrônicos Vestíveis , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Humanos , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Álcool de Polivinil/síntese química , Álcool de Polivinil/química , Propriedades de Superfície , Taninos/síntese química , Taninos/química
19.
ACS Appl Mater Interfaces ; 12(8): 9080-9089, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32053340

RESUMO

Hydrogel structures with microscale morphological features have extensive application in tissue engineering owing to their capacity to induce desired cellular behavior. Herein, we describe a novel biofabrication method for fabrication of grooved solid and hollow hydrogel fibers with control over their cross-sectional shape, surface morphology, porosity, and material composition. These fibers were further configured into three-dimensional structures using textile technologies such as weaving, braiding, and embroidering methods. Additionally, the capacity of these fibers to integrate various biochemical and biophysical cues was shown via incorporating drug-loaded microspheres, conductive materials, and magnetic particles, extending their application to smart drug delivery, wearable or implantable medical devices, and soft robotics. The efficacy of the grooved fibers to induce cellular alignment was evaluated on various cell types including myoblasts, cardiomyocytes, cardiac fibroblasts, and glioma cells. In particular, these fibers were shown to induce controlled myogenic differentiation and morphological changes, depending on their groove size, in C2C12 myoblasts.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo
20.
Colloids Surf B Biointerfaces ; 182: 110353, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336281

RESUMO

Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric amine-functionalized (PMSNs) samples, consecutively. These nanoparticles were characterized by scanning electron microscopy, zeta potential measurement, dynamic light scattering, BET (Brunauer, Emmett, Teller) analysis, and FTIR technique. In a 3D culture system, stem cells were encapsulated in alginate hydrogel in which MSNs of different functionalities were incorporated. The results showed good biocompatibility for both BMSNs and AMSNs in 2D and 3D culture systems. For these samples, the viability of about 80% was acquired after 2 weeks of 3D culture. When compared to the control, CMSNs caused higher cell proliferation in the 2D culture; while they showed cytotoxic effects in the 3D culture system. Interestingly, polymeric amine-functionalized silica nanoparticles (PMSNs) resulted in disrupted morphology and very low viability in the 2D cell culture and even less viability in 3D environment in comparison to BMSNs and AMSNs. This significant decrease in cell viability was attributed to the higher uptake values of highly positively charged PMSNs by cells as compared to other MSNs. This up-regulated uptake was evaluated by using an inductively coupled plasma optical emission spectroscopy instrument (ICP-OES). These results uncover different interactions between cell and nanoparticles with various surface chemistries. Building on these results, new windows are opened for employing biocompatible nanoparticles such as BMSNs and AMSNs, even at high concentrations, as potential cargos for carrying required growth and/or differentiation factors for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/síntese química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/química , Alginatos/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células , Encapsulamento de Células/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Nanopartículas/ultraestrutura , Porosidade , Silanos/química , Dióxido de Silício/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA