Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(2): 242-248, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635590

RESUMO

Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.


Assuntos
Elétrons , Polímeros , Neurônios/fisiologia , Transdução de Sinais , Semicondutores
2.
Science ; 379(6634): 795-802, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821679

RESUMO

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Assuntos
Biopolímeros , Encéfalo , Condutividade Elétrica , Enzimas , Sistema Nervoso Periférico , Animais , Biopolímeros/biossíntese , Encéfalo/enzimologia , Eletrodos , Eletrônica , Enzimas/metabolismo , Sanguessugas , Modelos Animais , Sistema Nervoso Periférico/enzimologia , Polimerização , Peixe-Zebra
3.
J Neural Eng ; 15(6): 065001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132444

RESUMO

OBJECTIVE: Neural electrophysiology is often conducted with traditional, rigid depth probes. The mechanical mismatch between these probes and soft brain tissue is unfavorable for tissue interfacing. Making probes compliant can improve biocompatibility, but as a consequence, they become more difficult to insert into the brain. Therefore, new methods for inserting compliant neural probes must be developed. APPROACH: Here, we present a new bioresorbable shuttle based on the hydrolytically degradable poly(vinyl alcohol) (PVA) and poly(lactic-co-glycolic acid) (PLGA). We show how to fabricate the PVA/PLGA shuttles on flexible and thin parylene probes. The method consists of PDMS molding used to fabricate a PVA shuttle aligned with the probe and to also impart a sharp tip necessary for piercing brain tissue. The PVA shuttle is then dip-coated with PLGA to create a bi-layered shuttle. MAIN RESULTS: While single layered PVA shuttles are able to penetrate agarose brain models, only limited depths were achieved and repositioning was not possible due to the fast degradation. We demonstrate that a bilayered approach incorporating a slower dissolving PLGA layer prolongs degradation and enables facile insertion for at least several millimeters depth. Impedances of electrodes before and after shuttle preparation were characterized and showed that careful deposition of PLGA is required to maintain low impedance. Facilitated by the shuttles, compliant parylene probes were also successfully implanted into anaesthetized mice and enabled the recording of high quality local field potentials. SIGNIFICANCE: This work thereby presents a solution towards addressing a key challenge of implanting compliant neural probes using a two polymer system. PVA and PLGA are polymers with properties ideal for translation: commercially available, biocompatible with FDA-approved uses and bioresorbable. By presenting new ways to implant compliant neural probes, we can begin to fully evaluate their chronic biocompatibility and performance compared to traditional, rigid electronics.


Assuntos
Materiais Biocompatíveis , Eletrodos Implantados , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Álcool de Polivinil/química , Implantes Absorvíveis , Animais , Encéfalo , Impedância Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Adv Healthc Mater ; 5(17): 2295-302, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27385673

RESUMO

A compact multianalyte biosensing platform is reported, composed of an organic electrochemical transistor (OECT) microarray integrated with a pumpless "finger-powered" microfluidic, for quantitative screening of glucose, lactate, and cholesterol levels. A biofunctionalization method is designed, which provides selectivity towards specific metabolites as well as minimization of any background interference. In addition, a simple method is developed to facilitate multi-analyte sensing and avoid electrical crosstalk between the different transistors by electrically isolating the individual devices. The resulting biosensing platform, verified using human samples, offers the possibility to be used in easy-to-obtain biofluids with low abundance metabolites, such as saliva. Based on our proposed method, other types of enzymatic biosensors can be integrated into the array to achieve multiplexed, noninvasive, personalized point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dedos , Dispositivos Lab-On-A-Chip , Saliva/metabolismo , Transistores Eletrônicos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA