Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499190

RESUMO

The exploration of functional films using sustainable cellulose-based materials to replace plastics has been of much interest. In this work, two kinds of lignin nanoparticles (LNPs) were mixed with cellulose nanofibrils (CNFs) for the fabrication of composite films with biodegradable, flexible and ultraviolet blocking performances. LNPs isolated from p-toluenesulfonic acid hydrolysis was easily recondensed and deposited on the surface of composite film, resulting in a more uneven surface; however, the composite film consisting of CNFs and LNPs isolated from maleic acid hydrolysis exhibited a homogeneous surface. Compared to pure CNF film, the composite CNF/LNP films exhibited higher physical properties (tensile strength of 164 MPa and Young's modulus of 8.0 GPa), a higher maximal weight loss temperature of 310 °C, and a perfect UVB blocking performance of 95.2%. Meanwhile, the composite film had a lower environmental impact as it could be rapidly biodegraded in soil and manmade seawater. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites to produce functional and biodegradable film as a promising alternative to petrochemical plastics.


Assuntos
Nanofibras , Nanopartículas , Lignina/química , Nanofibras/química , Celulose/química , Nanopartículas/química , Resistência à Tração
2.
Int J Biol Macromol ; 166: 1578-1585, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181218

RESUMO

Due to the current state of ozone layer depletion and potential risk of skin cancer, researches on sustainable cellulose-based films with ultraviolet (UV) blocking capabilities has attracted widespread attention. However, pure cellulose-based film required UV absorbent to be incorporated because of its poor UV blocking ability. In this work, natural lignocellulosic nanofibril (LCNF) film was fabricated by vacuum filtration and pressing process without any complex chemical modification or adding UV absorbers. The residual lignin retained in LCNF was found to act as natural macro-molecular UV absorber. LCNF film with lignin content of 4.89-15.68% exhibited excellent thermal stability, and their UVA and UVB blocking were in the range of 81.4-99.5% and 96.7-100%, respectively. Moreover, LCNF film exhibited stable UV shielding performance under high temperature, UV irradiation, acidic or alkaline conditions, providing LCNF film with a long-term use capacity. Overall, LCNF film is more environmentally friendly and harmless, which shows high potentials in anti-counterfeiting materials, UV protection, and windshields for vehicles.


Assuntos
Lignina/química , Nanofibras/química , Protetores Solares/química , Raios Ultravioleta , Absorção de Radiação
3.
Bioresour Technol ; 337: 125379, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34111629

RESUMO

Developing low-cost and sustainable fractionation technology is the key to achieve the maximal utilization of lignocellulosic biomass. This study reported benzenesulfonic acid (BA) as a green hydrotrope for efficient lignocellulose conversion into two fractions at atmospheric pressure: (1) a primarily cellulosic solid residue that can be utilized to produce high-value building blocks (lignocellulosic nanomaterials or sugars), and (2) the collected spent acid liquor that can be diluted with anti-solvent to easily obtain lignin nanoparticles. BA hydrotropic method exhibited greater reaction selectivity to solubilize lignin, where approximately 80% lignin were removed at only 80 °C in 20 min. The lower lignin content substrates resulted in relatively higher enzymatic hydrolysis efficiency of 80% and less entangled lignocellulosic nanofibrils (LCNF). Furthermore, the separated lignin particles size can be easily adjusted by the initial acid concentration. Overall, this work presented a promising and simple technology in achieving lignocellulose separation and utilization under mild conditions.


Assuntos
Benzenossulfonatos , Lignina , Biomassa , Hidrólise
4.
Bioresour Technol ; 293: 122171, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31558340

RESUMO

In this work, lignocellulosic nanofibrils (LCNF) produced from mechanical fibrillation with mixed enzymatic pretreatment or post-treatment were compared and the chemical composition, water retention value (WRV), average-number height and crystallinity for the obtained LCNF were evaluated. Compared to pure mechanical fibrillation, both mixed enzymatic pretreatment and post-treatment could efficiently facilitate cellulose nanofibrillation. Moreover, mixed enzymatic pretreatment was more suitable for LCNF production, resulting in a relatively higher WRV of 909% and smaller average-number height of 15 nm. These discoveries provide new insights into a more efficient biological method for the production and application of cellulose nanomaterials.


Assuntos
Celulose , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA