Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 429: 128384, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236041

RESUMO

Lotus-like Ni@NiO embedded porous carbons (Ni@NiO/PCs) were fabricated by pyrolysis of MOF-74/cellulose nanocrystal hybrids, and used as a solid phase microextraction (SPME) coating for ultrasensitive determination of chlorobenzenes (CBs) from water combined with gas chromatography-mass spectrometry. Owing to its abundant chemical groups, high porosity, and excellent thermal stability, the as-prepared Ni@NiO/PCs presented superior extraction performance compared to commercial SPME coatings. Notably, Ni@NiO/PCs derived from MOF-74/CNC hybrids presented higher extraction efficiencies towards CBs than that derived from pristine CNC and MOF-74 due to the formation of micro/mesopores and more abundant oxygen-containing groups. Under the optimum extraction conditions, the proposed analytical method presented wide linearity range (0.5-1500 ng L-1), ultra-low detection of limit (0.005-0.049 ng L-1), and excellent precision with relative standard deviations of 4.7-9.2% for a single fiber and 8.8-10.9% for 5 fibers, and long lifetime (≥160 times). The proposed analytical method was finally applied for determination of CBs from real water samples, and the recoveries were in the range of 93.2-116.8% towards eight CBs. This study delivered a novel and efficient sorbent as SPME coating to extraction and determination of CBs from water.


Assuntos
Lotus , Nanopartículas , Poluentes Químicos da Água , Carbono , Celulose , Clorobenzenos , Nanopartículas/análise , Porosidade , Microextração em Fase Sólida/métodos , Água/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA