Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 18(3): 1470-1479, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586444

RESUMO

To enhance the water solubility, oral bioavailability, and tumor targeting of gambogenic acid (GNA), polydopamine nanoparticles (PDA NPs) were prepared to encapsulate and stabilize GNA surface modified by folic acid (FA) and then coated with sodium alginate (GNA@PDA-FA SA NPs) to achieve an antitumor effect by oral administration. GNA@PDA-FA SA NPs exhibited in vitro pH-sensitive release behavior. In vitro cell studies manifested that GNA@PDA-FA NPs had higher cytotoxicity to 4T1 cells compared with raw GNA (IC50 = 2.58 µM vs 7.57 µM). After being modified with FA, GNA@PDA-FA NPs were taken up easily by 4T1 cells. In vivo studies demonstrated that the area under the curve (AUC0→∞) of the plasma drug concentration-time of GNA@PDA-FA SA NPs was 2.97-fold higher than that of raw GNA, along with improving drug distribution in the liver, lung, and kidney tissues. In vivo anti-tumor experiments, GNA@PDA-FA SA NPs significantly inhibited the growth of breast tumors in the 4T1 xenograft breast cancer model via oral administration without obvious toxicity on major organs. Our studies indicated that the GNA@PDA-FA SA NPs modified with FA and coated with SA were a promising drug delivery system for targeting tumor therapy via oral administration.


Assuntos
Indóis/química , Nanopartículas/química , Polímeros/química , Xantenos/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Ácido Fólico/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos
2.
AAPS PharmSciTech ; 22(7): 220, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405290

RESUMO

3-O-ß-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-ß-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and - 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC0→600) and half-life (t1/2) of Gal-Res NPs were enhanced 1.82-fold and 2.19-fold higher than those of raw Gal-Res. The in vivo biodistribution results showed that Gal-Res NPs were more distributed in liver tissue than Gal-Res. Gal-Res NPs with high bioavailability and liver accumulation were hopeful drug delivery systems (DDS) to treat liver diseases.


Assuntos
Indóis/química , Nanopartículas , Polímeros/química , Portadores de Fármacos , Tamanho da Partícula , Resveratrol , Distribuição Tecidual
3.
Int J Pharm ; 587: 119665, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32702449

RESUMO

As one of the active pharmaceutical ingredients in Gamboge, Gambogenic acid (GNA) has shown diverse anti-tumor activities. To reduce the vascular irritation of GNA and improve its water solubility, tumor targeting, and bioavailability, GNA loaded Zein nanoparticles (GNA@Zein NPs) was further coated by polydopamine (PDA) to develop GNA@Zein-PDA NPs by anti-solvent precipitation and surface modification. The results showed that particle size and Zeta potential of GNA@Zein-PDA NPs were about 310 nm and -40.8 mV with core-shell morphology confirmed by TEM. GNA@Zein-PDA NPs increased the water solubility of GNA by more than 700 times and showed pH-sensitive release behavior in PBS with pH 6.86. In vitro cytotoxicity tests showed that GNA@Zein-PDA NPs had higher inhibitory activity on HepG2 cells than free GNA, and their IC50 were 1.59 µg/mL and 9.89 µg/mL, respectively. Additionally, the hemolysis and vascular irritation assay showed that GNA@Zein-PDA NPs had good cytocompatibility and reduced the irritation of GNA to blood vessels. Moreover, the in vivo pharmacokinetic experiments exhibited that the Cmax and AUC0-t of GNA@Zein-PDA NPs were significantly improved approximately by 2.09-fold and 3.48-fold over that of GNA, respectively. In conclusion, GNA@Zein-PDA NPs solve many defects of GNA and provide a tumor-targeting drug delivery for GNA.


Assuntos
Nanopartículas , Zeína , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Indóis , Tamanho da Partícula , Polímeros , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA