Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Periodontal Res ; 54(1): 46-52, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368813

RESUMO

OBJECTIVE: The aim of this study was to evaluate surface changes on dental implant systems and ions release after immersion in fluoride and hydrogen peroxide. METHODS: Ten implant-abutment assemblies were embedded in acrylic resin and cross-sectioned along the implant vertical axis. Samples were wet ground and polished. Delimited areas of groups of samples were immersed in 1.23% sodium fluoride gel (F) or in 35% hydrogen peroxide (HP) for 16 min. Gels (n = 3) were collected from the implant surfaces and analyzed by inductively coupled plasma mass spectrometry (ICP-MS), to detect the concentration of metallic ions released from the implant systems. Selected areas of the abutment and implant (n = 15) were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). RESULTS: SEM images revealed surface topographic changes on implant-abutment joints after immersion in fluoride. Implants showed excessive oxidation within loss of material, while abutment surfaces revealed intergranular corrosion after immersion in fluoride. ICP-MS results revealed a high concentration of Ti, Al, V ions in fluoride after contact with the implant systems. Localized corrosion of implant systems could not be detected by SEM after immersion in hydrogen peroxide although the profilometry showed increase in roughness. ICP-MS showed the release of metallic ions in hydrogen peroxide medium after contact with dental implants. CONCLUSION: Therapeutical substances such as fluorides and hydrogen peroxide can promote the degradation of titanium-based dental implant and abutments leading to the release of toxic ions.


Assuntos
Projeto do Implante Dentário-Pivô , Implantes Dentários , Peróxido de Hidrogênio/efeitos adversos , Imersão/efeitos adversos , Fluoreto de Sódio/efeitos adversos , Corrosão , Géis , Íons , Espectrometria de Massas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxirredução , Propriedades de Superfície , Fatores de Tempo , Titânio
2.
Biointerphases ; 7(1-4): 64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23109105

RESUMO

The functionalization of chitosan with carboxymethyl groups allows zwitterionic or anionic chitosan derivatives to be obtained as a function of the degree of substitution. Here, we show that polyelectrolyte multilayers of chitosan and carboxymethylchitosan can be assembled by "dipping" or "spraying" to form strongly hydrated films in which both the polyanion and polycation possess the same polymer backbone ("matched chemistries"). Such films grow rapidly to fairly large thickness in very few assembly steps, especially in the case of "matched" charge densities, and atomic force microscopy reveals the formation of surface patterns that are dependent on the deposition conditions and on the number of layers. Interestingly, the influence of the molar masses of the polyelectrolyte pairs on the complex formation is somewhat counterintuitive, the stronger complexation occurring between polyanions and polycations of different ("non-matching") lengths.


Assuntos
Biotecnologia/métodos , Polissacarídeos/química , Materiais Biocompatíveis/química , Quitosana/análogos & derivados , Quitosana/química , Quitosana/metabolismo , Concentração de Íons de Hidrogênio , Íons/química , Microscopia de Força Atômica , Polimerização , Polissacarídeos/metabolismo , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA