Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Small ; 20(20): e2309200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295089

RESUMO

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Assuntos
Álcoois Graxos , Lipídeos , Cristais Líquidos , Nanopartículas , Nanopartículas/química , Álcoois Graxos/química , Cristais Líquidos/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Íons/química , Lipossomos
2.
Soft Matter ; 17(12): 3306-3313, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33623948

RESUMO

Inverse bicontinuous cubic phase nanoparticles (cubosomes) have attracted significant attention in recent years, owing to their potential use as delivery vehicles for chemically fragile or poorly soluble drugs and nutraceuticals. Herein we have investigated the use of lipid nanoparticles as a delivery vehicle for curcumin, a compound with demonstrated anti-cancer properties. Curcumin is encapsulated within cubosomes comprised of several different lipid formulations, as well as phospholipid-based liposomes. The entrapment efficiency of curcumin within cubosomes was observed to vary depending on both the nanoparticle architecture and the curcumin concentration. Fluorescence spectroscopy analysis revealed that penetration of curcumin into the hydrophobic region of the bilayer was dependent on lipid composition. Curcumin was typically associated with the polar headgroup region at low concentrations, but transferred to the lipid bilayer region at higher concentrations, particularly in phytantriol cubosomes. Each nanoparticle formulation was characterized using small angle X-ray scattering and dynamic light scattering to assess the structural stability subsequent to curcumin encapsulation. The structure of the cubosomes was generally robust to the addition of curcumin, while the liposomes displayed a large increase in particle size and PDI at higher curcumin concentrations. Finally, the cytotoxicity of each formulation was assessed against murine fibroblast (NIH3T3) and murine melanoma (B16F10) cell lines in order to investigate improvements in curcumin bioavailability following encapsulation in cubosomes, as well as assess potential anti-cancer applications. Increased cytotoxicity of the cubosome-loaded curcumin against the murine melanoma cell-line demonstrates the potential of these nanoparticles as delivery vehicles for curcumin and other poorly water-soluble drugs.


Assuntos
Curcumina , Nanopartículas , Animais , Lipossomos , Camundongos , Células NIH 3T3 , Tamanho da Partícula
3.
Faraday Discuss ; 191: 545-563, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27453499

RESUMO

Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.


Assuntos
Lipídeos/química , Cristais Líquidos , Nanopartículas/toxicidade , Polímeros , Animais , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Langmuir ; 31(39): 10871-80, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26362479

RESUMO

Lyotropic liquid crystalline nanoparticle dispersions are of interest as delivery vectors for biomedicine. Aqueous dispersions of liposomes, cubosomes, and hexosomes are commonly stabilized by nonionic amphiphilic block copolymers to prevent flocculation and phase separation. Pluronic stabilizers such as F127 are commonly used; however, there is increasing interest in using chemically reactive stabilizers for enhanced functionalization and specificity in therapeutic delivery applications. This study has explored the ability of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with poly(ethylene glycol) (DSPE-PEGMW) (2000 Da ≤ MW ≤ 5000 Da) to engineer and stabilize phytantriol-based lyotropic liquid crystalline dispersions. The poly(ethylene glycol) (PEG) moiety provides a tunable handle to the headgroup hydrophilicity/hydrophobicity to allow access to a range of nanoarchitectures in these systems. Specifically, it was observed that increasing PEG molecular weight promotes greater interfacial curvature of the dispersions, with liposomes (Lα) present at lower PEG molecular weight (MW 2000 Da), and a propensity for cubosomes (QII(P) or QII(D) phase) at MW 3400 Da or 5000 Da. In comparison to Pluronic F127-stabilized cubosomes, those made using DSPE-PEG3400 or DSPE-PEG5000 had enlarged internal water channels. The toxicity of these cubosomes was assessed in vitro using A549 and CHO cell lines, with cubosomes prepared using DSPE-PEG5000 having reduced cytotoxicity relative to their Pluronic F127-stabilized analogues.


Assuntos
Álcoois Graxos/química , Álcoois Graxos/toxicidade , Lipídeos/química , Cristais Líquidos/química , Cristais Líquidos/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Polietilenoglicóis/química , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Meios de Cultura , Humanos , Microscopia Eletrônica de Transmissão
5.
Langmuir ; 31(9): 2615-29, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25068381

RESUMO

Lyotropic liquid crystalline nanostructured particles (e.g., cubosomes and hexosomes) are being investigated as delivery systems for therapeutics in biomedical and pharmaceutical applications. Long term stability of these particulate dispersions is generally provided by steric stabilizers, typically commercially available amphiphilic copolymers such as Pluronic F127. Few examples exist of tailored molecular materials designed for lyotropic liquid crystalline nanostructured particle stabilization. A library of PEGylated-phytanyl copolymers (PEG-PHYT) with varying PEG molecular weights (200-14K Da) was synthesized to assess their performance as steric stabilizers for cubosomes and to establish structure-property relationships. The PEGylated-lipid copolymers were first found to self-assemble in excess water in the absence of cubosomes and also displayed thermotropic liquid crystal phase behavior under cross-polarized light microscopy. An accelerated stability assay was used to assess the performance of the copolymers, compared to Pluronic F127, for stabilizing phytantriol-based cubosomes. Several of the PEGylated-lipid copolymers showed steric stabilizer effectiveness comparable to Pluronic F127. Using synchrotron small-angle X-ray scattering and cryo-transmission electron microscopy, the copolymers were shown to retain the native internal lyotropic liquid crystalline structure, double diamond cubic phase (Q2(D)), of phytantriol dispersions; an important attribute for controlling downstream performance.


Assuntos
Álcoois Graxos/química , Cristais Líquidos/química , Nanopartículas/química , Polietilenoglicóis/química , Peso Molecular , Transição de Fase , Termodinâmica , Água/química
6.
Phys Chem Chem Phys ; 17(1): 276-86, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25412405

RESUMO

Lipid lamellar mesophases and their colloidal dispersions (liposomes) are increasingly being deployed in vivo as drug delivery vehicles, and also as models of biological membranes in fundamental biophysics studies. The permeability and diffusion of small molecules such as drugs is accommodated by a change in local curvature and molecular packing (mesophase behaviour) of the bilayer membrane molecules. Positron annihilation lifetime spectroscopy (PALS) is capable of providing in situ molecular level information on changes in free volume and void space arising from such changes in a non-perturbative manner. In this work PALS was used to systematically characterise the temperature-induced melting transitions (Tm) of saturated and unsaturated phospholipid-water systems while systematically varying lipid chain length, as both bulk lamellar mesophase and as aqueous colloidal dispersions (liposomes). A four-component fit of the data was used that provides separate PALS lifetimes for the aqueous (τ3) and organic domains (τ4). The oPs lifetime (τ4), for the lamellar phases of DSPC (C18:0), DPPC (C16:0), DMPC (C14:0) and DLPC (C12:0) was found to be independent of chain length, with characteristic lifetime value τ4 ∼ 3.4 ns. τ4 is consistently larger in the dispersed liposomes compared to the bulk mesophases, suggesting that the hydrocarbon chains are more mobile. The use of contemporary and consistent analytical approaches as described in this study is the key to future deployment of PALS to interrogate the in situ influence of drugs on membrane and cellular microenvironments.


Assuntos
Lipossomos/química , Cristais Líquidos/química , Fosfolipídeos/química , Elétrons , Hidrocarbonetos/química , Bicamadas Lipídicas/química , Permeabilidade , Transição de Fase , Análise Espectral , Temperatura de Transição
7.
Soft Matter ; 10(35): 6666-76, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25058647

RESUMO

Copolymers, particularly Pluronics®, are typically used to sterically stabilise colloidal nanostructured particles composed of a lyotropic liquid crystalline bicontinuous cubic phase (cubosomes). There is a need to design and assess new functionalisable stabilisers for these colloidal drug delivery systems. Six amphiphilic brush copolymers, poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate) (P(ODA)-b-P(PEGA-OMe)), synthesised by reversible addition-fragmentation chain transfer (RAFT), were assessed as novel steric stabilisers for cubosomes. It was found that increasing the density of PEG on the nanostructured particle surface by incorporating a PEG brush design (i.e., brush copolymer), provided comparable and/or increased stabilisation effectiveness compared to a linear PEG structure, Pluronic® F127, which is extensively used for steric stabilisation of cubosomes. Assessment was conducted both prior to and following the removal of the dodecyl trithiocarbonate end-group, by free radical-induced reduction. The reduced (P(ODA)-b-P(PEGA-OMe) copolymers were more effective steric stabilisers for phytantriol and monoolein colloidal particle dispersions than their non-reduced analogues. High throughput characterisation methodologies, including an accelerated stability assay (ASA) and synchrotron small angle X-ray scattering (SAXS), were implemented in this study for the rapid assessment of steric stabiliser effectiveness and lyotropic liquid crystalline phase identification. Phytantriol cubosomes stabilised with P(ODA)-b-P(PEGA-OMe) copolymers exhibited a double diamond cubic phase (Q(2)(D)), whilst monoolein cubosomes exhibited a primitive cubic phase (Q(2)(P)), analogous to those formed using Pluronic® F127.


Assuntos
Acrilatos/química , Metacrilatos/química , Polietilenoglicóis/química , Coloides/química , Microscopia Crioeletrônica , Sistemas de Liberação de Medicamentos , Radicais Livres , Luz , Lipídeos/química , Cristais Líquidos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Tamanho da Partícula , Poloxâmero/química , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Temperatura , Raios X
8.
J Colloid Interface Sci ; 656: 409-423, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000253

RESUMO

HYPOTHESIS: Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake. Therefore, we hypothesise that the specific internal mesophase of the LLCNPs will affect their cellular interactions and uptake efficiencies, with cubosomes exhibiting superior cellular uptake compared to other LLCNPs. EXPERIMENTS: LLCNPs with various mesophases, including liposomes, cubosomes, hexosomes, and micellar cubosomes, were formulated and characterised. Their physicochemical properties and cytotoxicity were assessed. Chinese Hamster Ovarian (CHO) cells were treated with fluorescently labelled LLCNPs, and their interactions were monitored and quantified through confocal microscopy and flow cytometry. FINDINGS: The non-lamellar LLCNPs showed significantly higher cellular interactions compared to liposomes, with cubosomes exhibiting the highest level. However, there was no significant difference in relative cell uptake between cubosomes, hexosomes, and micellar cubosomes. Cell uptake experiments at 4 °C revealed the presence of an energy-independent uptake mechanism. This study provides the first comparative analysis of cellular interactions and uptake efficiencies among LLCNPs with varying mesophases, while maintaining similar size, composition, and surface charge.


Assuntos
Cristais Líquidos , Nanopartículas , Nanoestruturas , Cricetinae , Animais , Lipossomos , Micelas , Nanopartículas/química , Cristais Líquidos/química , Cricetulus
9.
Langmuir ; 29(42): 12891-900, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24033086

RESUMO

Cubic phase lyotropic liquid crystalline colloidal dispersions (cubosomes) were surface-modified with seven polyelectrolyte layers using a layer-by-layer (LbL) approach. The first layer consisted of a copolymer synthesized from methacrylic acid and oleoyl methacrylate for enhanced incorporation within the bilayer of the cubic nanostructure. Six additional layers of poly(L-lysine) and poly(methacrylic acid) were then sequentially added, followed by a washing procedure to remove polymer aggregates from the soft matter particles. Polymer buildup was monitored via microelectrophoresis, dynamic light scattering, and small-angle X-ray scattering. Polymer-coated cubosomes were observed with cryo-transmission electron microscopy. A potential application of the modified nanostructured particles presented in this study is to reduce the burst-release effect associated with drug-loaded cubosomes. The effectiveness of this approach was demonstrated through loading and release results from a model hydrophilic small molecule (fluorescein).


Assuntos
Cristais Líquidos/química , Polímeros/química , Coloides/química , Eletrólitos/síntese química , Eletrólitos/química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
10.
J Colloid Interface Sci ; 634: 279-289, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542965

RESUMO

HYPOTHESIS: Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS: Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS: This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.


Assuntos
Cristais Líquidos , Nanopartículas , Cristais Líquidos/química , Microfluídica , Reprodutibilidade dos Testes , Polietilenos/química , Nanopartículas/química , Tamanho da Partícula
11.
Langmuir ; 28(25): 9223-32, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22630595

RESUMO

High-throughput methodologies have been employed to establish structure-property relationships and assess the effectiveness of nonionic steric stabilizers for inverse bicontinuous cubic lyotropic liquid crystalline nanoparticulate dispersions of monoolein and phytantriol. The ability of the stabilizers to disperse the lipids was compared with that of the commonly employed triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer Pluronic F127, which was used as a positive control. The poly(ethylene oxide) stearate class of stabilizers (commercially known as Myrj) were discovered to be effective as steric stabilizers for cubosomes, while retaining the internal nanostructure of the "parent" bulk phase. In particular, Myrj 59, with an average of 100 poly(ethylene oxide) units, was more effective than F127 at dispersing phytantriol, forming stable phytantriol cubosome dispersions at a concentration of 0.1 wt %, 5-fold lower than that achievable with Pluronic F127. The discovery of this new effective class of stabilizers for cubosomes, specifically enabled by high-throughput approaches, broadens the versatility of components from which to construct these interesting potential drug delivery and medical imaging nanoparticles.


Assuntos
Descoberta de Drogas , Cristais Líquidos/química , Nanopartículas/química , Polietilenoglicóis/química , Coloides , Álcoois Graxos/química , Glicerídeos/química , Tamanho da Partícula , Relação Estrutura-Atividade
12.
Langmuir ; 27(6): 2317-26, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21294552

RESUMO

The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO < 4, with HFarn(EO)2 exhibiting an inverse hexagonal (H(II)) phase stable to dilution. The phase diagram of HFarn(EO)3 displays both the gyroid (Ia3d) and double diamond (Pn3m) inverse bicontinuous cubic phases, with the latter being thermodynamically stable in excess water within the physiological regime. There is a strong preference for planar bilayer structures at intermediate headgroup ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 µM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.


Assuntos
Óxido de Etileno/química , Farneseno Álcool/análogos & derivados , Polietilenoglicóis/química , Tensoativos/química , Terpenos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Óxido de Etileno/farmacologia , Farneseno Álcool/química , Humanos , Células MCF-7 , Relação Estrutura-Atividade , Tensoativos/farmacologia , Terpenos/farmacologia
13.
ACS Appl Mater Interfaces ; 10(30): 25174-25185, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963859

RESUMO

Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.


Assuntos
Nanopartículas , Animais , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipídeos , Camundongos , Neoplasias Ovarianas , Paclitaxel , Polietilenoglicóis
14.
J Phys Chem B ; 119(1): 179-91, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490177

RESUMO

Micelles formed by amphiphiles in a protic ionic liquid (PIL), ethylammonium nitrate (EAN), were investigated using synchrotron small-angle X-ray scattering and contrasted with those that formed in water. The amphiphiles studied were cationic hexadecyltrimethylammonium chloride (CTAC) and hexadecylpyridinium bromide (HDPB) and nonionic poly(oxyethylene) (10) oleyl ether (Brij 97) and Pluronic ethylene oxide-propylene oxide-ethylene oxide block copolymer (P123). The scattering patterns were analyzed using spherical, core-shell, and cylindrical scattering models. The apparent micelle shape and size of the surfactants and the block copolymer in the PIL have been reported. At low amphiphile concentrations (<10 wt %) spherical micelles were preferentially formed for all the amphiphiles in EAN. The micelles formed by the two cationic amphiphiles in EAN and water were similar, though different scattering models were required predominantly due to the ionic nature of EAN. The two nonionic amphiphiles formed micelles with similar core radii in water and in EAN. However, the micelle shells composed of ethylene oxide groups fitted to a significantly thicker layer in water compared to EAN. At high concentrations (>10 wt %) in EAN and water, there was a preference for cylindrical micelles for CTAC, HDPB, and Brij 97; however, the P123 micelles remained spherical.


Assuntos
Líquidos Iônicos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Água/química , Compostos de Bis-Trimetilamônio/química , Micelas , Estrutura Molecular , Óleos de Plantas/química , Poloxaleno/química , Polietilenoglicóis/química , Compostos de Piridínio/química , Espalhamento a Baixo Ângulo , Síncrotrons
15.
Nanoscale ; 7(7): 2905-13, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25516406

RESUMO

Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.


Assuntos
Receptores ErbB/química , Lipídeos/química , Nanopartículas/química , Microscopia Crioeletrônica , Portadores de Fármacos/química , Álcoois Graxos/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Ligantes , Lipossomos/química , Cristais Líquidos , Maleimidas/química , Nanotecnologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Proteínas Recombinantes/química , Espalhamento de Radiação , Compostos de Sulfidrila/química , Raios X
16.
ACS Comb Sci ; 16(5): 205-10, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24673241

RESUMO

Assessment of the stability of colloidal systems, in particular lyotropic liquid crystalline dispersions, such as cubosomes and hexosomes, is typically performed qualitatively or with limited throughput on specialized instruments. Here, an accelerated stability assay for colloidal particles has been developed in 384-well plates with standard laboratory equipment. These protocols enable quantitative assessments of colloidal stability. To demonstrate the applicability of the assay, several steric stabilizers for cubic phase nanostructured particles (cubosomes) have been compared to the current "gold standard" Pluronic F127.


Assuntos
Coloides/química , Cristais Líquidos/química , Nanopartículas/química , Poloxâmero/química , Tamanho da Partícula
17.
J Colloid Interface Sci ; 392: 288-296, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23137909

RESUMO

Liquid crystalline nanostructured particles, such as cubosomes and hexosomes, are most often colloidally stabilised using the tri-block co-polymer Pluronic® F127. Although the effect of F127 on the internal particle nanostructure has been well studied, the associative aspects of F127 with cubosomes and hexosomes are poorly understood. In this study the quantitative association of F127 with phytantriol-based cubosomes and hexosomes was investigated. The amount of free F127 in the dispersions was determined using pressure ultra-filtration. The percentage of F127 associated with the particles plateaued with increasing F127 concentration above the critical aggregation concentration. Hence the free concentration of F127 in the dispersion medium was proposed as a key factor governing association below the CMC, and partitioning of F127 between micelles and particles occurred above the CMC. The association of F127 with the particles was irreversible on dilution. The F127 associated with both the external and internal surfaces of the phytantriol cubosomes. The effects of lipid and F127 concentration, lipid type, dilution of the dispersions and internal nanostructure were also elucidated. A greater amount of F127 was associated with cubosomes comprised of glyceryl monooleate (GMO) than those prepared using phytantriol. Hexosomes prepared using a mixture of phytantriol and vitamin E acetate (vitEA) had a greater amount of F127 associated with them than phytantriol cubosomes. Hexosomes prepared using selachyl alcohol had less F127 associated with them than phytantriol:vitEA-based hexosomes and GMO-based cubosomes. This indicated that both the lipid from which the particles are composed and the particle internal nanostructure have an influence on the association of F127 with lyotropic liquid crystalline nanostructured particles.


Assuntos
Cristais Líquidos/química , Nanoestruturas/química , Poloxâmero/química , Tamanho da Partícula
18.
J Colloid Interface Sci ; 402: 173-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643250

RESUMO

Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems.


Assuntos
Micelas , Polietilenoglicóis/química , Tensoativos/química , Transição de Fase , Análise Espectral
19.
ACS Nano ; 3(9): 2789-97, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19769405

RESUMO

Future nanoscale soft matter design will be driven by the biological paradigms of hierarchical self-assembly and long-lived nonequilibrium states. To reproducibly control the low-energy self-assembly of nanomaterials for the future, we must first learn the lessons of biology. Many cellular organelles exhibit highly ordered cubic membrane structures. Determining the mechanistic origins of such lipid organelle complexity has been elusive. We report the first observation of the complete sequence of major transformations in the conversion from a 1D lamellar membrane to 3D inverse bicontinuous cubic nanostructure. Characterization was enabled by adding a steric stabilizer to dispersions of lipid nanoparticles which increased the lifetime of very short-lived nonequilibrium intermediate structures. By using synchrotron small-angle X-ray scattering and cryo-transmission electron microscopy we observed and characterized initial lipid bilayer contacts and stalk formation, followed by membrane pore development, pore evolution into 2D hexagonally packed lattices, and finally creation of 3D bicontinuous cubic structures.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Membrana Celular/química , Microscopia Eletrônica de Transmissão , Polímeros/química , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Langmuir ; 21(14): 6399-405, 2005 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15982047

RESUMO

The long-ranged attractions between hydrophobic amorphous fluoropolymer surfaces are measured in water with and without dissolved air. An atomic force microscope is used to obtain more than 500 measured jump-in distances, which yields statistically reliable results. It is found that the range of the attraction and its variability is generally significantly decreased in deaerated water as compared to normal, aerated water. However, the range and strength of the attraction in deaerated water remain significantly greater than the van der Waals attraction for this system. The experimental observations are consistent with (1) nanobubbles being primarily responsible for the long-ranged attraction in normal water, (2) nanobubbles not being present in deaerated water when the surfaces are not in contact, and (3) the attraction in the absence of nanobubbles being most probably due to the approach to the separation-induced spinodal cavitation of the type identified by Bérard et al. [J. Chem. Phys. 1993, 98, 7236]. It is argued that the measurements in deaerated water reveal the bare or pristine hydrophobic attraction unobscured by nanobubbles.


Assuntos
Água/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA