Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(3): 65, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341396

RESUMO

Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.


Assuntos
Metais Pesados , Microplásticos , Humanos , Microplásticos/toxicidade , Solo/química , Plásticos , Ecossistema , Metais Pesados/toxicidade , Produtos Agrícolas
2.
Ecotoxicol Environ Saf ; 267: 115640, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37922780

RESUMO

Microplastics (MPs) are emerging environmental contaminants in soil ecosystems that disrupt the soil carbon (C) pool. Therefore, the response of microbial metabolism to MP-contaminated soil is crucial for soil-C stabilization. We undertook factorial experiments in a greenhouse with three types of soil microplastics with three levels of soil nutrients and undertook soil physiochemical analyses after 60 days. The present study revealed how the presence of degradable polylactic acid (PLA) and non-degradable polyethylene (PE) MPs affects soil microbial nutrient limitation and C use efficiency (CUE) at varying nutrient concentrations. The presence of PLA in soil with low nutrient levels led to a significant increase (29%) in the activities of nitrogen (N)-acquiring enzymes. In contrast, the presence of MPs had no effect on C- and N-acquiring enzymes. The occurrence of PE caused a 41% reduction in microbial C limitation in high-nutrient soils, and microbial nutrient metabolism was limited by the occurrence of MPs in soils amended with nutrients. A strong positive correlation between microbial C and nutrient limitation in the soil indicates that addressing C limitation followed by amendment of soil with MPs could potentially intensify microbial N limitation in soils with varying nutrients. In comparison, the microbial CUE increased by 10% with the application of degradable MPs (PLA) to soils with a low nutrient status. These findings highlight the significant influence of both degradable PLA and non-degradable PE MPs on soil microbial processes and C dynamics. In conclusion, PLA enhances metabolic efficiency in nutrient-rich soils, potentially aiding C utilization, whereas PE reduces microbial C limitation, offering promise for soil C sequestration strategies. Our findings underscore the importance of considering MPs in soil ecosystem studies and in broader sustainability efforts.


Assuntos
Ecossistema , Microplásticos , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno , Carbono , Nutrientes , Poliésteres , Solo
3.
Ecotoxicol Environ Saf ; 268: 115707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988994

RESUMO

Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.


Assuntos
Antioxidantes , Oxitetraciclina , Humanos , Microplásticos , Plásticos , Oxitetraciclina/toxicidade , Solo , Plantas , Antibacterianos/toxicidade , Poliésteres
4.
J Environ Manage ; 340: 118013, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121005

RESUMO

The input of agro-pollutants, such as microplastics and nanopesticides, on farmlands is widespread and may facilitate biological invasions in agroecosystems. Here, the effects of agro-pollutants that promote invasion of congener species is studied by examining the growth performance of native Sphagneticola calendulacea and its invasive congener, S. trilobata, when grown in a native only, invasive only and mixed community. Sphagneticola calendulacea naturally occurs in croplands in southern China, while S. trilobata was introduced to this region and has since naturalized, encroaching onto farmland. In our study, each plant community was subjected to the following treatments: control, microplastics only, nanopesticides only, and both microplastics and nanopesticides. The effects of the treatments on soils of each plant community were also examined. We found that aboveground, belowground, and photosynthetic traits of S. calendulacea were significantly inhibited by the combined microplastics and nanopesticides treatment in the native and mixed communities. The relative advantage index of S. trilobata was 69.90% and 74.73% higher under the microplastics only and nanopesticides only treatments respectively compared to S. calendulacea. Soil microbial biomass, enzyme activity, gas emission rates, and chemicals in each community were reduced when treated with both microplastics and nanopesticides. Yet, soil microbial biomass of carbon and nitrogen, CO2 emission rates and nitrous oxide rates were significantly higher (56.08%, 58.33%, 36.84% and 49.95% respectively) in the invasive species community than in the native species community under microplastics and nanopesticides. Our results suggest that the addition of agro-pollutants to soils favors the more resistant S. trilobata and suppresses the less tolerant S. calendulacea. Soil properties from the native species community are also more impacted by agro-pollutants than substrates supporting the invasive species. Future studies should explore the effects of agro-pollutants by comparing other invasive and native species and considering human activities, industry, and the soil environment.


Assuntos
Asteraceae , Poluentes Ambientais , Humanos , Microplásticos , Plásticos , Espécies Introduzidas , Poluição Ambiental , Solo/química , Microbiologia do Solo
5.
Sci Total Environ ; 926: 172089, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554966

RESUMO

Both alien plant invasions and soil microplastic pollution have become a concerning threat for terrestrial ecosystems, with consequences on the human well-being. However, our current knowledge of microplastic effects on the successful invasion of plants remains limited, despite numerous studies demonstrating the direct and indirect impacts of microplastics on plant performance. To address this knowledge gap, we conducted a greenhouse experiment involving the mixtures of soil and low-density polyethylene (LDPE) microplastic pellets and fragments at the concentrations of 0, 0.5 % and 2.0 %. Additionally, we included Solidago decurrens (native plant) and S. canadensis (alien invasive plant) as the target plants. Each pot contained an individual of either species, after six-month cultivation, plant biomass and antioxidant enzymes, as well as soil properties including soil moisture, pH, available nutrient, and microbial biomass were measured. Our results indicated that microplastic effects on soil properties and plant growth indices depended on the Solidago species, microplastic shapes and concentrations. For example, microplastics exerted positive effects on soil moisture of the soil with native species but negative effects with invasive species, which were impacted by microplastic shapes and concentrations, respectively. Microplastics significantly impacted catalase (P < 0.05) and superoxide dismutase (P < 0.01), aboveground biomass (P < 0.01), and belowground/aboveground biomass (P < 0.01) of the native species depending on microplastic shapes, but no significant effects on those of the invasive species. Furthermore, microplastics effects on soil properties, nutrient, nutrient ratio, and plant antioxidant enzyme activities contributed to plant biomass differently among these two species. These results suggested that the microplastics exerted a more pronounced impact on native Solidago plants than the invasive ones. This implies that the alien invasive species displays greater resistance to microplastic pollution, potentially promoting their invasion. Overall, our study contributes to a better understanding of the promoting effects of microplastic pollution on plant invasion.


Assuntos
Solo , Solidago , Humanos , Solo/química , Ecossistema , Espécies Introduzidas , Microplásticos , Plásticos/toxicidade , Antioxidantes , Plantas
6.
Sci Total Environ ; 921: 171135, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402976

RESUMO

The diversity-invasibility hypothesis predicts that native plant communities with high biodiversity should be more resistant to invasion than low biodiversity communities. However, observational studies have found that there is often a positive relationship between native community diversity and invasibility. Pollutants were not tested for their potential to cause this positive relationship. Here, we established native communities with three levels of diversity (1, 2 and 4 species) and introduced an invasive plant [Symphyotrichum subulatum (Michx.) G. L. Nesom] to test the effects of different pollutant treatments (i.e., unpolluted control, microplastics (MPs) alone, cadmium (Cd) alone, and their combination) on the relationship between native community diversity and community invasibility. Our results indicate that different MPs and Cd treatments altered the invasibility of native communities, but this effect may depend on the type of pollutant. MPs single treatment reduced invasion success, and the degree of reduction increased with increasing native community diversity (Diversity 2: - 14.1 %; Diversity 4: - 63.1 %). Cd single treatment increased the aboveground biomass of invasive plants (+ 40.2 %) and invasion success. The presence of MPs inhibited the contribution of Cd to invasion success. Furthermore, we found that the complementarity and selection effects of the native community were negatively correlated with invasion success, and their relative contributions to invasion success also depended on the pollutant type. We found new evidence of how pollutants affect the relationship between native community diversity and habitat invasibility, which provides new perspectives for understanding and managing biological invasions in the context of environmental pollution. This may contribute to promoting the conservation of biodiversity, especially in ecologically sensitive and polluted areas.


Assuntos
Cádmio , Poluentes Ambientais , Cádmio/toxicidade , Microplásticos , Plásticos , Ecossistema , Biodiversidade , Plantas , Espécies Introduzidas
7.
Sci Total Environ ; 912: 169420, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128670

RESUMO

Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Microplásticos , Plásticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Antibacterianos , Metais Pesados/toxicidade , Produtos Agrícolas
8.
Environ Pollut ; 316(Pt 1): 120522, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309303

RESUMO

Antibiotics and microplastics including nanoplastics are emerging contaminants which have become global environmental issues. The application of antibiotics along with microplastics in soil and their entrance in food chain may pose a major threat to human health. The single and combined exposure of polystyrene microplastic (MPS), norfloxacin (NF) and sulfadiazine (SFD) on Chrysanthemum coronarium L. a medicinal food crop, were investigated. Accumulation of nutrient element contents (Fe, Mn, Mg, Zn, K) differentially responded to the single or combined treatments compared to the control. Scanning electron microscopy and transmission electron microscopy analysis indicated that MPS, NF and SFD accumulated in roots, shoots, and leaves and affected their ultrastructure. Compared with that of the single contamination, the co-contamination of microplastics and antibiotics had a greater effect on leaf metabolites due to combination of multiple abiotic stresses. MPS, NF and SFD accumulated from roots and transported to shoots and leaves which ultimately impacts plant metabolites and, nutritional value. They subsequently impact agricultural sustainability and food safety of medicinal food plants. This investigation suggests the possible ecological risks of microplastics to medicinal food plants, especially in co-exposure with organic pollutants like antibiotics and help to reveal potential mechanisms of phytotoxicity of different antibiotics with polyethylene microplastic.


Assuntos
Chrysanthemum , Microplásticos , Humanos , Plásticos , Poliestirenos/toxicidade , Norfloxacino/toxicidade , Sulfadiazina , Antibacterianos/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-36231243

RESUMO

Alien plant invasion and residual soil microplastics (MPs) are growing threats to agricultural crop production. This study determined the adverse effects of Canadian goldenrod (Solidago canadensis L.) invasion and residual soil MPs on rice growth and development. The biomass, phenological indices, photosynthetic parameters, and antioxidant enzyme activities of rice were measured on the 50th and 80th day of post-plantation. Biomass and phenotypic results indicated the more harmful effects of the combination of S. canadensis invasion and residual soil MPs compared to S. canadensis invasion or residual soil MPs effects alone. Moreover, the interaction effect of S. canadensis invasion and residual soil MPs markedly reduced the ascorbate peroxidase and catalase belowground, while they increased in the aboveground parts of the rice. However, the S. canadensis invasion and residual soil MPs interactive treatments lowered the superoxide dismutase concentrations in the belowground parts of the rice plants while elevating the peroxidase and reactive oxygen species concentrations in both the belowground and aboveground parts compared to the other treatments. Among all treatments, S. canadensis invasion alone had the most negligible negative impact on rice biomass and growth indices. Our study suggests that soil MPs could negatively affect crop production with invasive alien plants, and the combined effects were more harmful than either of the single factors. Our findings will lay the groundwork for analyzing the impacts of invasive alien plants on rice crops.


Assuntos
Oryza , Solidago , Antioxidantes , Ascorbato Peroxidases , Canadá , Catalase , Espécies Introduzidas , Microplásticos , Plásticos , Espécies Reativas de Oxigênio , Solo , Superóxido Dismutase
10.
Bioresour Technol ; 269: 557-566, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219494

RESUMO

Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Lignina/metabolismo , Catálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA