Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Pharm ; 21(1): 102-112, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994899

RESUMO

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) plays a key role in hepatocellular carcinoma (HCC) development, and the inhibition of O-GlcNAcylation has therapeutic potential. To decrease the systemic adverse events and increase targeting, we used sialic acid (SA)-decorated liposomes loaded with OSMI-1, an inhibitor of the O-GlcNAcylation, to further improve the anti-HCC effect. Fifty pairs of HCC tissue samples and the cancer genome atlas database were used to analyze the expression of O-GlcNAc transferase (OGT) and its effects on prognosis and immune cell infiltration. OSMI-1 cells were treated with SA and liposomes. Western blotting, immunofluorescence, cell proliferation assay, flow cytometry, enzyme-linked immunosorbent assay, immunohistochemistry, and tumorigenicity assays were used to investigate the antitumor effect of SA-modified OSMI-1 liposomes in vitro and in vivo. OGT was highly expressed in HCC tissues, negatively correlated with the degree of tumor infiltration of CD8+ and CD4+T cells and prognosis, and positively correlated with the degree of Treg cell infiltration. SA-modified OSMI-1 liposome (OSMI-1-SAL) was synthesized with stable hydrodynamic size distribution. Both in vitro and in vivo, OSMI-1-SAL exhibited satisfactory biosafety and rapid uptake by HCC cells. Compared to free OSMI-1, OSMI-1-SAL had a stronger capacity for suppressing the proliferation and promoting the apoptosis of HCC cells. Moreover, OSMI-1-SAL effectively inhibited tumor initiation and development in mice. OSMI-1-SAL also promoted the release of damage-associated molecular patterns, including anticalreticulin, high-mobility-group protein B1, and adenosine triphosphate, from HCC cells and further promoted the activation and proliferation of the CD8+ and CD4+T cells. In conclusion, the OSMI-1-SAL synthesized in this study can target HCC cells, inhibit tumor proliferation, induce tumor immunogenic cell death, enhance tumor immunogenicity, and promote antitumor immune responses, which has the potential for clinical application in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Lipossomos/farmacologia , Neoplasias Hepáticas/metabolismo , Ácido N-Acetilneuramínico , Proliferação de Células
2.
J Nanobiotechnology ; 18(1): 80, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448273

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. RESULTS: Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. CONCLUSIONS: Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.


Assuntos
Betametasona , Fármacos Dermatológicos , Lipossomos , Psoríase , Tretinoína , Animais , Betametasona/química , Betametasona/farmacocinética , Betametasona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Géis , Células HaCaT , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Lipossomos/toxicidade , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Maleabilidade , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Ratos , Ratos Sprague-Dawley , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
3.
J Liposome Res ; 30(1): 12-20, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30741058

RESUMO

Multidrug resistance (MDR) is the largest obstacle to the success of chemotherapy. The development of innovative strategies and safe sensitizers is required to overcome MDR. Paclitaxel (PTX) is a widely used chemotherapeutic drug, the application of which has been learn to understand MDR. However, the application and use are severely restricted because of this MDR. Cyclodextrins (CDs) of many carriers, additionally have shown anti-cancer capability in MDR cancer cells. In this study, novel paclitaxel/hydroxypropyl-ß-cyclodextrin complex-loaded liposomes (PTXCDL) have been developed in an attempt to overcome MDR in a PTX-resistant human lung adenocarcinoma (A549/T) cell line. The in vitro application of PTXCDL exhibited pH-sensitive PTX release, potent cytotoxicity, and enhanced intracellular accumulation. In comparison to in vivo, PTXCDL also show a stronger inhibition of tumor growth. In comparison, these findings suggest that the PTXCDL provide a novel strategy for effective therapy of resistant cancers by overcoming the drug resistance.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Antineoplásicos/química , Ciclodextrinas/química , Lipossomos/química , Nanopartículas/química , Paclitaxel/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Paclitaxel/farmacologia , Resultado do Tratamento
4.
Mol Pharm ; 16(11): 4530-4541, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31617723

RESUMO

Tumor metastasis is the most dangerous stage in tumorigenesis and its evolution, which causes about 80% clinical death. However, common therapies including chemotherapy may increase the risk of tumor metastasis while killing cancer cells. Tumor metastasis is closely related to many factors in the tumor microenvironment, especially hypoxia. As one of the characteristics of a malignant tumor microenvironment, hypoxia plays an important role in the growth, metabolism, and metastasis of tumors. Upregulation of the hypoxia-inducible factor (HIF) would stimulate the metastasis and migration of cancer cells. In this study, we developed an artificial oxygen carrier system, a hemoglobin-loaded liposome (Hb@lipo), which was capable of effectively delivering oxygen to tumor. The way of providing oxygen not only alleviated tumor hypoxia but also downregulated the expression of HIF, which is conducive to reducing tumor malignancy. Alleviating the tumor hypoxic microenvironment alone is not enough to inhibit tumor metastasis; thus, we prepared the liposome containing a chemotherapeutic agent cabazitaxel (CBZ@lipo). Our data indicated that the combination therapy of Hb@lipo and CBZ@lipo can efficiently kill cancer cells and inhibit tumor growth. At the same time, it can effectively entrap cancer cells in tumor sites by relieving the hypoxic microenvironment of tumors and reduce the metastasis of cancer cells during and after the chemotherapy. Our research may provide a clinical cancer chemotherapy reference that reduces the risk of cancer cell metastasis while inhibiting tumor growth.


Assuntos
Antineoplásicos/farmacologia , Metástase Neoplásica/tratamento farmacológico , Oxigênio/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Animais , Biomimética/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HT29 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipossomos/química , Células MCF-7 , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral/efeitos dos fármacos
5.
J Nanobiotechnology ; 17(1): 82, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291960

RESUMO

Skin damages are defined as one of most common lesions people suffer from, some of wounds are notoriously difficult to eradicate such as chronic wounds and deep burns. Existing wound therapies have been proved to be inadequate and far from satisfactory. The cutting-edge nanotechnology offers an unprecedented opportunity to revolutionize and invent new therapies or boost the effectiveness of current medical treatments. In particular, the nano-drug delivery systems anchor bioactive molecules to applied area, sustain the drug release and explicitly enhance the therapeutic efficacies of drugs, thus making a fine figure in field relevant to skin regeneration. This review summarized and discussed the current nano-drug delivery systems holding pivotal potential for wound healing and skin regeneration, with a special emphasis on liposomes, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, nanofibrous structures and nanohydrogel.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Fenômenos Fisiológicos da Pele , Cicatrização/efeitos dos fármacos , Animais , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Lipídeos/química , Lipossomos/química , Polímeros/química , Regeneração
6.
Mol Pharm ; 12(4): 1072-83, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25490413

RESUMO

To improve the gene transfection efficiency mediated by chitosan-g-stearic acid (CS) micelles, poly(ethylene glycol)-b-poly(γ-glutamic acid) (PG) was incorporated into a CS-based gene delivery system. CS/PG/pDNA complexes were prepared by ionic interaction. CS and PEGylated CS (PCS) micelles were introduced to prepare binary complexes for use as controls. CS/PG/pDNA complexes possessed similar sizes and presented as irregular spheroids in shape. The incorporation of PG into CS/pDNA complexes did not affect the ability of CS to compact pDNA and also showed a protective effect against DNase I based degradation of pDNA. Importantly, PG could increase gene transfection efficiency, which was also affected by the mixing methods used for the preparation of CS/PG/pDNA ternary complexes. The transfection efficiencies mediated by CS/PG/pDNA complexes against HEK293 and EC-1 cells reached up to 40.8% and 11.6%, respectively, which were much higher than those of CS/pDNA complexes (1.3% and 4.0%) and PCS/pDNA complexes (0.8% and 2.4%). In addition, the incorporation of PG into CS/pDNA complexes significantly enhanced cellular uptake in HEK293 and EC-1 cells and, additionally, improved endosomal escape and intracellular vector unpacking. However, the incorporation of PG reduced the cellular uptake of CS/PG/pDNA complexes in macrophages (RAW264.7 cells). It was further demonstrated that, in addition to a nonspecific charge-mediated binding to cell membranes, a γ-PGA-specific receptor-mediated pathway was involved in the internalization of CS/PG/pDNA complexes. These results indicated that PG played multiple important roles in enhancing the transfection efficiency of CS/PG/pDNA complexes.


Assuntos
Glicolipídeos/química , Micelas , Peptídeos/química , Polietilenoglicóis/química , Animais , Ânions , Quitosana/química , DNA/química , Eletroforese em Gel de Ágar , Endossomos/metabolismo , Técnicas de Transferência de Genes , Genes Reporter , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Polímeros/química , Ácidos Esteáricos/química , Transfecção
7.
Nanomedicine ; 11(4): 855-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725489

RESUMO

The amphiphilic graft copolymer poly (lactic-co-glycolic acid)-g-dextran (Dex-PLGA) was successfully synthesized to fabricate micelles for the delivery of paclitaxel with low critical micelle concentration (CMC). The sizes of paclitaxel-loaded Dex-PLGA (Dex-PLGA/PTX) micelles were kept below 100nm with a relatively narrow size distribution. This novel PTX nano-formulation was found to exhibit slightly stronger in vitro cytotoxicity against SKOV-3, OVCAR-8 and MCF-7 cells with Taxol®. However, it could overcome the drug resistance of multi-drug resistant human breast carcinoma cells (MCF-7/Adr cells). The maximum tolerated dose (MTD) of Dex-PLGA/PTX after a single dose was more than 200mg PTX/kg, which were 8-fold higher than that of Paclitaxel Injection. The in vivo antitumor activity results indicated that Dex-PLGA/PTX micelles treatments effectively suppressed the tumor growth and highly reduced the toxicity against animals than Taxol® and could eliminate the SKOV-3 tumor by highly increasing the drug dose. FROM THE CLINICAL EDITOR: Chemotherapy for cancer has always been hampered the toxic side effect of the drugs. Nanotechnology has helped to produce various drug delivery systems to minimize these side effects. In this article, the authors designed dextran-based micelles loaded with paclitaxel. They showed effective anti-tumor activity in both in vitro and in vivo experiments with significant lower systemic toxicity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dextranos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Láctico/farmacologia , Micelas , Paclitaxel/farmacologia , Ácido Poliglicólico/farmacologia , Animais , Neoplasias da Mama/patologia , Dextranos/química , Feminino , Ácido Láctico/química , Células MCF-7 , Camundongos , Paclitaxel/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
8.
Mol Pharm ; 10(5): 1865-73, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23495754

RESUMO

The aim of the present study was to evaluate the potential of PEGylated solid lipid nanoparticle (pSLN) as mucus penetrating particles (MPP) for oral delivery across gastrointestinal mucus. The SLN was prepared by an aqueous solvent diffusion method, subsequently modified with PEG2000-stearic acid (PEG2000-SA) as hydrophilic groups. Surface properties, cytotoxicity, cellular uptake, and transport across Caco-2/HT29 coculture cell monolayers, intestinal absorption, and pharmacokinetics of pSLN were studied compared with that of SLN. Quantitative cellular uptake showed that the internalization of SLN and pSLN was an active transfer process, which would be restrained by several inhibitors of cell activity. Compared with SLN, the permeation ability of pSLN decreased through Caco-2 cell monolayer while it increased through a mucus-secreting Caco-2/HT29 coculture cell monolayer, which indicated that the mucus layer has a significant impact on determining the efficiency of oral nanoformulations. In addition to increasing permeation ability, the stability of the nanoparticles in simulated intestinal fluids was also increased by the PEGylation. Moreover, in vitro everted gut sac technique and the ligated intestinal loops model in vivo also demonstrated that pSLN can rapidly penetrate mucus secretions, whereas the SLN were strongly trapped by highly viscoelastic mucus barriers. The pharmacokinetic studies presented that pSLN exhibited improved absorption efficiency and prolonged blood circulation times with a 1.99-fold higher relative bioavailability compared with SLN. In conclusion, PEGylated solid lipid nanoparticles had advantages in enhancing the bioavailability of oral administration.


Assuntos
Absorção Intestinal , Nanopartículas/administração & dosagem , Nanopartículas/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Técnicas de Cocultura , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Células HT29 , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipídeos/química , Masculino , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
9.
J Control Release ; 361: 681-693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595667

RESUMO

The two-signal model of T cell activation has helped shape our understanding of the adaptive immune response for over four decades. According to the model, activation of T cells requires a stimulus through the T cell receptor/CD3 complex (signal 1) and a costimulatory signal 2. Stimulation of activatory signals via T cell agonists has thus emerged. However, for a robust T cell activation, it necessitates not only the presence of both signal 1 and signal 2, but also a high signaling strength. Herein, we report a photo-activable nano-agonist for the two-signal model of T cell in vivo activation. A UV-crosslinkable polymer is coated onto upconversion nanoparticles with satisfactory NIR-to-UV light conversion efficiency. Then dual signal molecules, i.e., signal 1 and signal 2, are conjugated to the polymer end to yield the photo-activable T cell nano-agonist. In melanoma and breast cancer models, photo-activable nano-agonist could bind onto corresponding activatory receptors on the surface of T cells, but has limited activity without the application of NIR light (absence of photo-crosslinking of receptors and consequently a poor signaling strength). While when the NIR light is switched on locally, T cells in tumor are remarkably activated and kill tumor cells effectively. Moreover, we do not observe any detectable toxicities related to the photo-activable nano-agonist. We believe with two activatory signals being simultaneously strengthened by local photo-switched crosslinking, T cells realize a robust and selective activation in tumor and, consequently contribute to an enhanced and safe tumor immunotherapy.


Assuntos
Melanoma , Nanopartículas , Humanos , Imunoterapia , Ativação Linfocitária , Polímeros
10.
Biomater Sci ; 11(18): 6109-6115, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37591802

RESUMO

The field of biomaterials has experienced substantial evolution in recent years, driven by advancements in materials science and engineering. This has led to an expansion of the biomaterials definition to include biocompatibility, bioactivity, bioderived materials, and biological tissues. Consequently, the intended performance of biomaterials has shifted from a passive role wherein a biomaterial is merely accepted by the body to an active role wherein a biomaterial instructs its biological environment. In the future, the integration of bioinspired designs and dynamic behavior into fabrication technologies will revolutionize the field of biomaterials. This perspective presents the recent advances in the evolution of biomaterials in fabrication technologies and provides a brief insight into smart biomaterials.


Assuntos
Materiais Biocompatíveis , Engenharia
11.
Biomed Pharmacother ; 163: 114794, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121150

RESUMO

The incidence of chronic diabetic wounds is increasing with the growing number of diabetic patients, and conventional wound dressings have proven to be ineffective in treating them. To address this challenge, researchers have developed artificial dermal substitutes using collagen and hyaluronic acid, which are crucial extracellular matrices. However, these subsitiues lack precision and targeted treatment. To overcome this limitation, a gene liposome nanocomplex-loaded dermal substitute (GDS) has been developed as a potential solution. This innovative biomaterial combines the benefits of liposome nanocomplexes with dermal substitutes to offer a more accurate and effective treatment option for chronic diabetic wounds. The GDS has the ability to deliver genes and therapeutic agents specifically to the wound site, promoting angiogenesis and accelerating the wound healing process. Overall, the GDS presents a promising new approach for the clinical treatment of chronic diabetic wounds, offering a targeted and effective solution for this growing problem.


Assuntos
Diabetes Mellitus , Lipossomos , Ratos , Animais , Lipossomos/farmacologia , Cicatrização , Colágeno/farmacologia , Matriz Extracelular
12.
Mol Pharm ; 9(9): 2469-78, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22827551

RESUMO

The main objective of this study was aimed at tumor microenvironment-responsive vesicle for targeting delivery of the anticancer drug, doxorubicin (DOX). A glucolipid-like conjugate (CS) was synthesized by the chemical reaction between chitosan and stearic acid, and polyethylene glycol (PEG) was then conjugated with CS via a pH-responsive cis-aconityl linkage to produce acid-sensitive PEGylated CS conjugates (PCCS). The conjugates with a critical micelle concentration (CMC) of 181.8 µg/mL could form micelles in aqueous phase, and presented excellent DOX loading capacity with a drug encapsulation efficiency up to 87.6%. Moreover, the PCCS micelles showed a weakly acid-triggered PEG cleavage manner. In vitro drug release from DOX-loaded PCCS micelles indicated a relatively faster DOX release in weakly acidic environments (pH 5.0 and 6.5). The CS micelles had excellent cellular uptake ability, which could be significantly reduced by the PEGylation. However, the cellular uptake ability of PCCS was enhanced comparing with insensitive PEGylated CS (PCS) micelles in weakly acidic condition imitating tumor tissue. Taking PCS micelles as a comparative group, the PCCS drug delivery system was demonstrated to show much more accumulation in tumor tissue, followed by a relatively better performance in antitumor activity together with a security benefit on xenograft tumor model.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Glicolipídeos/administração & dosagem , Micelas , Neoplasias/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Quitosana/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Glicolipídeos/química , Glicolipídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular/métodos , Neoplasias/metabolismo , Polietilenoglicóis/química , Ratos , Ácidos Esteáricos/química
13.
Mol Pharm ; 8(1): 225-38, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21138243

RESUMO

Stearic acid-g-chitosan (low molecular weight chitosan CS-SA) with different amino-substituted degrees was synthesized and evaluated as an oral delivery vehicle in this paper. Synthesized CS-SA with 4.47%, 24.36% and 40.36% amino-substituted degree (SD) could form micelles by self-aggregation in aqueous medium. The critical micelle concentration (CMC) ranged from about 0.16 to 0.25 mg/mL, which decreased with the increased SD of CS-SA. The CS-SA micelles had 33.4-130.9 nm size and 22.9- 48.4 mV zeta potential. CS-SA with higher SD had the smaller size and the higher zeta potential. The permeability and possible transport route of CS-SA micelles across the gastrointestinal tract was investigated by in vitro model Caco-2 cells. The results exhibited that the CS-SA micelles had good permeability, and the permeability enhanced with increasing SD of the CS-SA. The transport of the micelles showed energy, pH and concentration dependent transcytosis process, mainly through macropinocytosis and partly via fluid-phase transcytosis and caveolar route. The reversible decrease in transepithelial electrical resistance (TEER) by treatment of micelles suggested that paracellular transport pathway was another route of the micelles crossing the gastrointestinal tract. Using doxorubicin (DOX) as a model drug, the permeation results further demonstrated that the DOX transport mediated by CS-SA micelles could avoid efflux via P-glycoprotein. In vivo study demonstrated that the micelles could significantly improve the bioavailability of encapsulated drug. The results presented that the CS-SA with higher SD was a promising vehicle for oral drugs.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Micelas , Polímeros/química , Ácidos Esteáricos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Polímeros/efeitos adversos
14.
ACS Nano ; 15(11): 17361-17374, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34662120

RESUMO

Extremely limited drug retention and depigmentation represent the greatest barriers against vitiligo treatment advancement. Here, inspired by biological melanosomes, the primary melanin transporter, we developed biomimetic melanosomes to combat reactive oxygen species (ROS)-mediated melanocyte damage and depigmentation. Briefly, methylprednisolone (MPS) and melanin-mimicking polydopamine (PDA) were encapsulated inside lysine-proline-valine (KPV)-modified deformable liposomes (KPV-Lipos). Owing to their phospholipid bilayer flexibility and the specific affinity for melanocortin 1 receptor (MC1R), KPV-Lipos exhibited 1.43-fold greater skin deposition than traditional liposomes. The binding of KPV and its receptor also contributed to activating the cAMP-tyrosinase (TYR) signaling pathway, improving the endogenous melanin content. In addition, PDA mimicked melanosomes as it effectively increased the exogenous melanin content and scavenged ROS. Meanwhile, MPS inhibited inflammatory cytokine secretion, limiting the depigmented area. Ultimately, the biomimetic melanosomes affected the skin color of mice with H2O2-induced vitiligo. These melanosomes show potential as a universal platform for the self-supply of melanin by self-driven melanin synthesis with exogenous supplementation. Furthermore, this study offers ideas for the production of artificial packed melanosome substitutes for melanocyte-related diseases.


Assuntos
Melanossomas , Vitiligo , Camundongos , Animais , Vitiligo/tratamento farmacológico , Vitiligo/metabolismo , Melaninas , Peróxido de Hidrogênio/metabolismo , Biomimética , Lipossomos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Melanócitos/metabolismo , Pigmentação
15.
Int J Nanomedicine ; 15: 3267-3279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440123

RESUMO

Vitiligo is a depigmentation disease that seriously affects the physical health, mental health and quality of life of a patient. Therapeutic aim at control immunoreaction by relieving oxidative stress. Unfortunately, the cuticle barrier function and lack of specific accumulation lead to unsatisfactory therapeutic outcomes and side effects. The introduction and innovation of nanotechnology offers inspiration and clues for the development of new strategies to treat vitiligo. However, not many studies have been done to interrogate how nanotechnology can be used for vitiligo treatment. In this review, we summarize and analyze recent studies involving nano-drug delivery systems for the treatment of vitiligo, with a special emphasis on liposomes, niosomes, nanohydrogel and nanoparticles. These studies made significant progress by either increasing drug loading efficiency or enhancing penetration. Based on these studies, there are three proposed principles for topical nano-drug delivery systems treatment of vitiligo including the promotion of transdermal penetration, enhancement of drug retention and facilitation of melanin regeneration. The presentation of these ideas may provide inspirations for the future development of topical drug delivery systems that will conquer vitiligo.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Vitiligo/tratamento farmacológico , Administração Tópica , Animais , Humanos , Lipossomos , Melaninas/metabolismo
16.
Biomater Sci ; 7(6): 2372-2382, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30916681

RESUMO

An ointment containing retinoic acid deformable liposomes (TRA DLs) and epidermal growth factor cationic deformable liposomes (EGF CDLs) was prepared for the treatment of deep partial-thickness burns. The characterization tests confirmed both liposomes featured small particle sizes, high drug entrapment efficiencies and sustained drug release behavior. Compared with the free drug, TRA DLs and EGF CDLs exhibited superior skin permeation and remarkably increased drug deposition by 2.9 and 18.8 folds, respectively. Results on HaCaT cells indicated the combined application of two liposomes exerted a synergistic effect and prominently promoted cell proliferation and migration. Application of the dual liposomal ointment on a deep partial-thickness burn model stimulated wound closure (p < 0.001), promoted skin appendage formation and increased collagen production, thus improving healing quality. Finally, it was demonstrated that TRA significantly up-regulated the expression of EGFR and HB-EGF to enhance the therapeutic effect of EGF. Therefore, the dual liposomal ointment is a promising topical therapeutic for burn treatment.


Assuntos
Queimaduras/fisiopatologia , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Fenômenos Mecânicos , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/toxicidade , Humanos , Lipossomos , Permeabilidade , Ratos , Pele/efeitos dos fármacos , Pele/metabolismo , Tretinoína/metabolismo , Tretinoína/toxicidade
17.
Biomaterials ; 217: 119326, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288173

RESUMO

Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 µg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.


Assuntos
Micelas , Ácido N-Acetilneuramínico/química , Polietilenoglicóis/química , Traumatismos da Medula Espinal/terapia , Animais , Terapia Combinada , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/tratamento farmacológico
18.
Eur J Pharm Biopharm ; 69(1): 117-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17997293

RESUMO

Stearic acid-grafted chitosan oligosaccharide (CSO-SA) with 3.48% amino-substituted degree (SD%) was synthesized by coupling reaction. The CSO-SA could self-aggregate to form micelle with a critical micelle concentration (CMC) at 0.035 mg/mL in the aqueous phase. The CSO-SA self-aggregate micelles indicated spatial structure with multi-hydrophobic core. One CSO-SA chain could form 2.8 hydrophobic cores. Cellular uptakes of CSO-SA micelles by using A549, LLC, and SKOV3 cells as model tumor cell lines showed the faster cellular internalization of CSO-SA micelles, and the cellular uptakes on the LLC and SKOV3 cells were higher than that on the A549 cells. Doxorubicin (DOX) was then used as a model drug to incorporate into CSO-SA micelles. To reduce the initial burst drug release from CSO-SA micelles loading DOX (CSO-SA/DOX), the shell of CSO-SA micelles was crosslinked by glutaraldehyde. The shell crosslinking of CSO-SA micelles reduced the micelle size and surface potential, but it did not significantly affect the cellular uptake and drug encapsulation efficiency of CSO-SA micelles. The cellular inhibition experiments demonstrated that the cytotoxicity of DOX was increased by the encapsulation of CSO-SA micelles. CSO-SA/DOX displayed the best antitumor efficacy in SKOV3 cell line due to the higher cellular uptake percentage of CSO-SA micelles and the lower sensitivity of free drug to the cells. The cytotoxicities of shell crosslinked CSO-SA/DOX were highly enhanced in all cell lines than those of unmodified CSO-SA/DOX.


Assuntos
Quitosana/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Micelas , Ácidos Esteáricos/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Reagentes de Ligações Cruzadas/farmacologia , Doxorrubicina/química , Humanos , Oligossacarídeos/química , Solventes/química , Tecnologia Farmacêutica/métodos , Fatores de Tempo
19.
Eur J Pharm Biopharm ; 70(3): 749-57, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18620050

RESUMO

Stearic acid-grafted chitosan oligosaccharide (CSO-SA) micelles presented a potential candidate for intracellular drug delivery carrier due to its special spatial structure. In this article, CSO-SA was further modified by polyethylene glycol (PEG). The physicochemical properties of PEGylated CSO-SA (PEG-CSO-SA) micelles were characterized. After PEGylation, the critical micelle concentration (CMC) of PEG-CSO-SA had no significant change; the micelle size increased; and the zeta potential decreased. The cellular uptake of CSO-SA micelles before and after PEGylation in macrophage RAW264.7, immortalized rat liver cells BRL-3A and human liver tumor cells HepG2 was studied. About 58.4+/-0.63% of CSO-SA micelles were uptaked by RAW264.7 in 24h, however, only 17.7+/-0.94% of PEG-CSO-SA micelles were internalized into RAW264.7 after the CSO-SA was modified with PEG in five molar times. Meanwhile, there were no changes in the uptake after PEGylation of CSO-SA in BRL-3A and HepG2. Using mitomycin C as a model drug, the in vitro anti-tumor activities of the drug loaded in the micelles were investigated. The 50% cellular growth inhibition (IC(50)) of the drug decreased from 1.97+/-0.2 to 0.13+/-0.02mug/mL after mitomycin C was loaded into CSO-SA micelles, and the IC(50) value of the drug had no obvious change when the CSO-SA was modified by PEG.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Quitosana/metabolismo , Portadores de Fármacos , Micelas , Mitomicina/farmacologia , Polietilenoglicóis/metabolismo , Ácidos Esteáricos/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Quitosana/análogos & derivados , Quitosana/química , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Concentração Inibidora 50 , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Mitomicina/química , Mitomicina/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Solubilidade , Ácidos Esteáricos/química , Fatores de Tempo
20.
Int J Pharm ; 348(1-2): 137-45, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-17714896

RESUMO

The aim of this study was to investigate the cellular uptake of solid lipid nanoparticles (SLN) and cytotoxicity of its paclitaxel delivery system. The conjugate of octadecylamine-fluorescein isothiocyanate (ODA-FITC) was synthesized, and used as a marker to prepare fluorescent SLN. The cellular uptakes of fluorescent SLN with different lipid material were evaluated by fluorescence microscopy and the measurement of fluorescence intensity. The order of cellular uptake ability was glycerol tristearate SLN>monostearin SLN>stearic acid SLN>Compritol 888 ATO SLN (ATO888 SLN). The cellular cytotoxicities of paclitaxel were highly enhanced by the encapsulation of lipid matrix. Due to the lower drug entrapment efficiency of glycerol tristearate SLN, monostearin SLN was considered as the best lipid material to improve the cytotoxicity of drug. The polyethylene glycol monostearate (PEG-SA) and the synthesized conjugate of folic acid-stearic acid (FA-SA) were further introduced into monostearin SLN, respectively. The PEG and folate modified SLN could enhance the cellular uptake of SLN and the cellular cytotoxicity of drug by the membrane disturb ability of PEG chains on the SLN surface and the improved endocytosis mediated by folate receptor.


Assuntos
Proliferação de Células/efeitos dos fármacos , Lipídeos/química , Nanopartículas/química , Paclitaxel/farmacologia , Aminas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/química , Fluoresceína-5-Isotiocianato/química , Ácido Fólico/química , Glicerídeos/química , Humanos , Concentração Inibidora 50 , Paclitaxel/química , Paclitaxel/farmacocinética , Tamanho da Partícula , Polietilenoglicóis/química , Eletricidade Estática , Estearatos/química , Ácidos Esteáricos/química , Propriedades de Superfície , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA