Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(5): 1069-1086, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748404

RESUMO

Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rio Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5-5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.


Assuntos
Celulases , Ecossistema , Proteômica , Celulose/metabolismo , Celulases/metabolismo , Monossacarídeos
2.
Microb Biotechnol ; 14(5): 1931-1943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403199

RESUMO

Pseudomonas putida is a highly solvent-resistant microorganism and useful chassis for the production of value-added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two-step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan-genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6-phosphogluconate and subsequently metabolizes it through the Entner-Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked-out to avoid the production of the dead-end product xylonate. We generated a set of DOT-T1E-derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT-T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l-1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.


Assuntos
Aminoácidos Aromáticos , Pseudomonas putida , Glucose , Lignina , Pseudomonas putida/genética , Xilose
3.
Microb Biotechnol ; 12(2): 200-209, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793487

RESUMO

The harmful effects of pollution from the massive and widespread use of fossil fuels have led various organizations and governments to search for alternative energy sources. To address this, a new energy bioprocess is being developed that utilizes non-edible lignocellulose - the only sustainable source of organic carbon in nature. In this mini-review, we consider the potential use of synthetic biology to develop new-to-nature pathways for the biosynthesis of chemicals that are currently synthesized using classical industrial approaches. The number of industrial processes based on starch or lignocellulose is still very modest. Advances in the area require the development of more efficient approaches to deconstruct plant materials, better exploitation of the catalytic potential of prokaryotes and lower eukaryotes and the identification of new and useful genes for product synthesis. Further research and progress is urgently needed in order for government and industry to achieve the major milestone of transitioning 30% of the total industry to renewable sources by 2050.


Assuntos
Biocombustíveis/microbiologia , Biotecnologia/métodos , Lignina/metabolismo , Engenharia Metabólica/métodos , Amido/metabolismo , Biotecnologia/tendências , Engenharia Metabólica/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA