Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618901

RESUMO

Serious environmental and health problems arise from the everyday release of industrial wastewater effluents. A wide range of pollutants, such as volatile organic compounds, heavy metals or textile dyes, may be efficiently removed by silica materials advanced solutions such as aerogels. This option is related to their exceptional characteristics that favors the adsorption of different contaminants. The aerogels performance can be selectively tuned by an appropriate chemical or physical modification of the aerogel's surface. Therefore, the introduction of amine groups enhances the affinity between different organic and inorganic contaminants and the silica aerogels. In this work, different case studies are reported to investigate and better understand the role of these functional groups in the adsorption process, since the properties of the synthesized aerogels were significantly affected, regarding their microstructure and surface area. In general, an improvement of the removal efficiency after functionalization of aerogels with amine groups was found, with removal efficiencies higher than 90% for lead and Rubi Levafix CA. To explain the adsorption mechanism, both Langmuir and Freundlich models were applied; chemisorption is most likely the sorption type taking place in the studied cases.


Assuntos
Aminas/química , Poluentes Ambientais , Dióxido de Silício/química , Géis de Silicone/química , Adsorção , Corantes/química , Cinética , Metais Pesados/química , Compostos Orgânicos Voláteis
2.
Mater Sci Eng C Mater Biol Appl ; 75: 1420-1426, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415433

RESUMO

A multifunctional nanomedicine platform was designed and evaluated for efficient colon cancer therapy by a combinatorial therapeutic approach based on a chemotherapeutic drug and mild hyperthermia. Advantage was taken from the dual role of methotrexate (MTX), as folate receptor-targeting, overexpressed in tumor cells, and as anticancer drug. Incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) allows to heat cancer cells externally through an alternating magnetic field. The developed nanocarrier was based on polyethylene glycol-polylactic acid (PEG-PLA) nanospheres to improve biocompatibility, enhancing their targeting by prolonging blood circulation time. By an emulsion-evaporation method the nanospheres were produced and then characterized for size distribution, zeta-potential, in vitro drug release profile and cellular studies. The co-delivery of MTX and SPIONs on PEG-PLA nanospheres resulted in nanocarriers with a size of 160nm in diameter, a polydispersity index below 0.2 and a zeta potential of ca. -18mV. Multifunctional nanospheres were monodisperse and stable up to 3months. MTX was released preferentially under mild hyperthermia conditions. The multifunctional nanospheres were able to increase the cytotoxicity of MTX towards Caco-2 and SW-480 colon cancer cells, in comparison to free drug. Also, the nanospheres allowed the incorporated MTX to induce greater cell cycle arrest and apoptotic effects than the free MTX. This study provides evidences that MTX-SPIONs-PEG-PLA nanospheres are a promising solution to address colorectal cancer over-expressing folate receptors, by a combinatory approach.


Assuntos
Neoplasias do Colo/terapia , Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida , Metotrexato , Nanosferas/química , Poliésteres , Polietilenoglicóis , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Metotrexato/química , Metotrexato/farmacocinética , Metotrexato/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 172: 135-146, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27106814

RESUMO

Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57emu/g at 5K and 42emu/g at 300K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.


Assuntos
Materiais Biocompatíveis/química , Óxido Ferroso-Férrico/química , Magnetismo , Nanopartículas/ultraestrutura , Solo/química , Animais , Brasil , Linhagem Celular Tumoral , Cristalização , Humanos , Ferro/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Termogravimetria , Difração de Raios X
4.
Adv Colloid Interface Sci ; 236: 1-27, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27321857

RESUMO

Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.


Assuntos
Técnicas Biossensoriais/métodos , Celulose/química , Nanomedicina/métodos , Nanoestruturas/química , Dióxido de Silício/química , Técnicas Biossensoriais/instrumentação , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Géis , Humanos , Nanomedicina/instrumentação , Nanoestruturas/uso terapêutico , Nanoestruturas/ultraestrutura , Transição de Fase , Porosidade , Próteses e Implantes , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA