Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Orthod Craniofac Res ; 26(3): 415-424, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36458927

RESUMO

OBJECTIVES: Antidepressants, specifically Selective Serotonin Re-uptake Inhibitors (SSRIs), that alter serotonin metabolism are currently the most commonly prescribed drugs for the treatment of depression. There is some evidence to suggest these drugs contribute to birth defects. As jaw development is often altered in craniofacial birth defects, the purpose of this study was to interrogate the effects of in utero SSRI exposure in a preclinical model of mandible development. MATERIALS AND METHODS: Wild-type C57BL6 mice were used to produce litters that were exposed in utero to an SSRI, Citalopram (500 µg/day). Murine mandibles from P15 pups were analysed for a change in shape and composition. RESULTS: Analysis indicated an overall shape change with total mandibular length and ramus height being shorter in exposed pups as compared to controls. Histomorphometric analysis revealed that first molar length was longer in exposed pups while third molar length was shorter in exposed as compared to control. Histological investigation of molars and surrounding periodontium revealed no change in collagen content of the molar in exposed pups, some alteration in collagen composition in the periodontium, increased alkaline phosphatase in molars and periodontium and decreased mesenchymal cell marker presence in exposed mandibles. CONCLUSION: The results of this study reveal SSRI exposure may interrupt mandible growth as well as overall dental maturation in a model of development giving insight into the expectation that children exposed to SSRIs may require orthodontic intervention.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Animais , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Serotonina/metabolismo , Camundongos Endogâmicos C57BL , Citalopram/efeitos adversos , Mandíbula/metabolismo
2.
PLoS One ; 19(7): e0307134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024220

RESUMO

Selective serotonin re-uptake inhibitors (SSRI) widely used in the treatment of depression, anxiety, obsessive compulsive disorder, fibromyalgia, and migraine are among the most heavily prescribed drug class in the United States (US). Along with an overall rise in SSRI use, these medications are increasingly used by pregnant individuals and recent preclinical and clinical studies have indicated that SSRIs may increase the prevalence of congenital abnormalities and birth defects of the craniofacial region. Our group has developed pre-clinical models of study, including those that mimic the clinical use of SSRI in mice. Here we designed a study to interrogate a commonly prescribed SSRI drug, Citalopram, for its effects on craniofacial and dental development when introduced in utero. Pre-natal exposure to a clinically relevant dose of citalopram resulted in changes in craniofacial form identified by an increase in endocast volume in SSRI exposed postnatal day 15 mouse pups. More specifically, cranial length and synchondrosis length increased in SSRI exposed pups as compared to control pups of the same age. Additionally, growth center (synchondrosis) height and width and palate length and width decreased in SSRI exposed pups as compared to control un-exposed pups. Effects of SSRI on the molars was minimal. Craniofacial growth and development continue to be an area of interest in the investigation of in utero pharmaceutical drug exposure. Altogether these data indicate that prenatal SSRI exposure affects craniofacial form in multiple tissues and specifically at growth sites and centers of the skull.


Assuntos
Citalopram , Anormalidades Craniofaciais , Inibidores Seletivos de Recaptação de Serotonina , Crânio , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Camundongos , Feminino , Gravidez , Citalopram/farmacologia , Crânio/efeitos dos fármacos , Anormalidades Craniofaciais/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Modelos Animais de Doenças , Masculino
3.
J Craniofac Surg ; 23(3): 919-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22627405

RESUMO

BACKGROUND: Cells within the dura mater have been implicated in the determination of suture patency and fusion. Craniosynostosis (CS), the premature fusion of 1 or more of the cranial sutures, could result from abnormal control over the differentiation of osteoprogenitor cells from the dura mater. This study tested whether dura mater cells derived from rabbits with congenital CS were different from cells derived from normal rabbits and investigated the effects that CS dura mater had on osteogenic differentiation in vitro and in vivo. METHODS: Cells were derived from the dura mater from wild-type rabbits (WT; n = 23) or CS rabbits (n = 16). Cells were stimulated with bone morphogenetic protein 4, and alkaline phosphatase (ALP) expression and cell proliferation were assessed. Dura mater-derived cells were also cocultured with primary rabbit bone-derived cells, and ALP was assessed. Finally, interactions between the dura mater and overlying tissues were manipulated in vivo. RESULTS: Craniosynostotic dura mater-derived cells proliferated faster than did WT cells but were not more ALP positive. Coculture experiments showed that CS dura mater cells induced increased ALP activity in CS bone-derived cells, but not in WT bone-derived cells. In vivo experiments showed that a physical barrier successfully inhibited dura mater-derived osteogenesis. CONCLUSIONS: Coculture of CS bone- and CS dura mater-derived cells evoked an abnormal phenotype in vitro. Covering the CS dura mater led to decreased bone formation in vivo. Further investigations will focus on the signaling molecules involved in the communication between these 2 CS tissue types in vitro and in vivo.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Suturas Cranianas/citologia , Craniossinostoses/cirurgia , Dura-Máter/citologia , Fosfatase Alcalina/metabolismo , Análise de Variância , Animais , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Suturas Cranianas/metabolismo , Suturas Cranianas/cirurgia , Craniossinostoses/metabolismo , Dura-Máter/metabolismo , Osteogênese/fisiologia , Fenótipo , Politetrafluoretileno , Coelhos
4.
Front Genet ; 13: 871927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651944

RESUMO

The Fgfr2c C342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel's cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2c C342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c +/+ ). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2c C342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2c C342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2c C342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2c C342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA