Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Sci Technol ; 57(43): 16552-16563, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856883

RESUMO

The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.


Assuntos
Microplásticos , Poluentes Químicos da Água , Polímeros/metabolismo , Disponibilidade Biológica , Poluentes Químicos da Água/toxicidade , Metais , Plásticos/análise , Íons
2.
Phys Chem Chem Phys ; 16(29): 15173-88, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24935405

RESUMO

We report a theory for the evaluation of the electrodynamics of dispersions of spherical soft multilayered (bio)particles, with microorganisms and polyelectrolyte multilayers-coated particles as illustrative paradigms. These particles generally consist of a hard (ion- and water-impermeable) core component supporting a succession of step-function or diffuse-like concentric soft (permeable) polymeric layers defined by distinct electrostatic, hydrodynamic and structural properties. The formalism is based on a rigorous numerical resolution of the coupled Navier-Stokes-Brinkman equation, continuity equations for the flow and for the ionic species present in solution, and the non-linear Poisson equation corrected for the multilayered nature of the soft interphase. The frequency-dependent dynamic mobility and dielectric permittivity of such soft particles suspensions are discussed as a function of the key electrohydrodynamic features of the constituting particulate peripheral layers and solution salinity. It is shown that the frequency dependent permittivity is mostly affected by the total charge carried by the overall soft interphase. In contrast, the dynamic mobility is mainly determined by the charge and friction characteristics of the layers located within an electrokinetically-active outer particle region whose extension is defined by the electric double layer thickness and the Brinkman length. Results highlight that under particular electrolyte concentration and layer-to-layer thickness ratio conditions, the dynamic mobility may reflect the physico-chemical and structural properties of the only innermost layers of the soft particle coating.


Assuntos
Bactérias/química , Eletrólitos/química , Modelos Químicos , Polímeros/química , Eletricidade Estática , Hidrodinâmica , Propriedades de Superfície
3.
J Hazard Mater ; 465: 133067, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039813

RESUMO

COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.


Assuntos
Microbiota , Rios , Máscaras , Fotólise , Polipropilenos , Biofilmes , Plásticos
4.
Langmuir ; 29(45): 13821-35, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24117349

RESUMO

In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.


Assuntos
Cádmio/química , Látex/química , Chumbo/química , Nanopartículas/química , Compostos Organometálicos/química , Eletricidade Estática , Concentração de Íons de Hidrogênio , Propriedades de Superfície , Temperatura
5.
Langmuir ; 29(47): 14655-65, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24152085

RESUMO

The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (µ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of µ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.


Assuntos
Técnicas Eletroquímicas , Borracha/química , Microscopia Crioeletrônica , Cinética , Estrutura Molecular , Tamanho da Partícula , Fosfolipídeos/química , Proteínas/química , Propriedades de Superfície
6.
Nat Commun ; 14(1): 2553, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137893

RESUMO

Bacterial biofilms are surface-attached communities that are difficult to eradicate due to a high tolerance to antimicrobial agents. The use of non-biocidal surface-active compounds to prevent the initial adhesion and aggregation of bacterial pathogens is a promising alternative to antibiotic treatments and several antibiofilm compounds have been identified, including some capsular polysaccharides released by various bacteria. However, the lack of chemical and mechanistic understanding of the activity of these polymers limits their use to control biofilm formation. Here, we screen a collection of 31 purified capsular polysaccharides and first identify seven new compounds with non-biocidal activity against Escherichia coli and/or Staphylococcus aureus biofilms. We measure and theoretically interpret the electrophoretic mobility of a subset of 21 capsular polysaccharides under applied electric field conditions, and we show that active and inactive polysaccharide polymers display distinct electrokinetic properties and that all active macromolecules share high intrinsic viscosity features. Despite the lack of specific molecular motif associated with antibiofilm properties, the use of criteria including high density of electrostatic charges and permeability to fluid flow enables us to identify two additional capsular polysaccharides with broad-spectrum antibiofilm activity. Our study therefore provides insights into key biophysical properties discriminating active from inactive polysaccharides. The characterization of a distinct electrokinetic signature associated with antibiofilm activity opens new perspectives to identify or engineer non-biocidal surface-active macromolecules to control biofilm formation in medical and industrial settings.


Assuntos
Anti-Infecciosos , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Biofilmes , Antibacterianos/farmacologia , Bactérias , Polímeros , Testes de Sensibilidade Microbiana
7.
Phys Chem Chem Phys ; 14(13): 4491-504, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22370713

RESUMO

We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The limits, strengths and extensions of the approach are further discussed within the context of metal speciation dynamics at soft planar and particulate complexing interphases.


Assuntos
Membranas Artificiais , Metais/química , Compostos Organometálicos/química , Termodinâmica , Difusão , Eletrólitos/química , Cinética , Ligantes
8.
Langmuir ; 27(17): 10739-52, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21761889

RESUMO

We report a comprehensive formalism for the electrokinetics (streaming current, I(str)) at soft multilayered polyelectrolyte films. These assemblies generally consist of a succession of permeable diffuse layers that differ in charge density, thickness, and hydrodynamic softness. The model, which extends one that we recently reported for the electrokinetics of monolayered soft thin films (Langmuir 2010, 26, 18169-18181), is valid without any restriction in the number and thickness of layers, or in the degree of dissociation and density of ionizable groups they carry. It further covers the limiting cases of hard and free draining films and correctly compares to semianalytical expressions derived for I(str) under conditions where the Debye-Hückel approximation applies. The flexibility of the theory is illustrated by simulations of I(str) for a two-layer assembly of cationic and anionic polymers over a large range of pH values and electrolyte concentrations. On this basis, it is shown that the point of zero streaming current (PZSC) of soft multilayered interphases, defined by the pH value where I(str) = 0, generally depends on the concentration of the (indifferent) electrolyte. The magnitude and direction of the shift in PZSC with varying salinity are intrinsically governed by the dissymmetry in protolytic characteristics and density of dissociable groups within each layer constituting the film, together with the respective film thickness and hydrodynamic softness. The fundamental effects covered by the theory are illustrated by streaming current measurements performed on two practically relevant systems, a polyelectrolyte bilayer prepared from poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA) and a polymer-cushioned (PEI) bilayer lipid membrane.


Assuntos
Membranas Artificiais , Eletroquímica , Eletrólitos/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
9.
ACS Appl Bio Mater ; 4(3): 2614-2627, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014378

RESUMO

The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against Escherichia coli, with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness. Depending on the latter and on phage replication features, it is found that the hydrogels loaded with the bacteria-killing viruses make both contact killing (targeted bacteria are those adhered at the hydrogel surface) and release killing (planktonic bacteria are the targets) possible with ca. 20-80% efficiency after only 4 h of incubation at 25 °C as compared to cases where hydrogels are free of viruses. We further demonstrate the lack of dependence of virus diffusion within the hydrogel and of the maximal viral storage capacity on the hydrogel mechanical properties. In addition to the evidenced bacteriolytic activity of the phages loaded in the hydrogels, the antimicrobial property of the phage-loaded materials is shown to be partly controlled by the chemistry of the hydrogel skeleton and, more specifically, by the mobility of the peripheral free polycationic components, known for their ability to weaken and permeabilize membranes of bacteria, the latter then becoming "easier" targets for the viruses.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/química , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Hidrogéis/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Estresse Mecânico
10.
Langmuir ; 26(23): 18169-81, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21043444

RESUMO

Streaming current measurements were performed on poly(N-isopropylacrylamid-co-carboxyacrylamid) (PNiPAAM-co-carboxyAAM) soft thin films over a broad range of pH and salt concentration (pH 2.5-10, 0.1-10 mM KCl) at a constant temperature of 22 °C. The films are negatively charged because of the ionization of the carboxylic acid groups in the repeat unit of the copolymer. For a given salt concentration, the absolute value of the streaming current exhibits an unconventional, nonmonotonous dependence on pH with the presence of a maximum at pH ∼6.4. This maximum is most pronounced at low electrolyte concentration and gradually disappears with increasing salinity. Complementary ellipsometry data further reveal that the average film thickness increases by a factor of ∼2.2 with increasing pH over the whole range of salt concentration examined. The larger the solution salt concentration, the lower the pH value where expansion of the hydrogel layer starts to take place. The dependence of film thickness on pH and electrolyte concentration remarkably follows that obtained for surface conductivity. The streaming current and surface conductivity results could be consistently interpreted on a quantitative basis using the theory we previously derived for the electrokinetics of charged diffuse (heterogeneous) soft thin films complemented here by the derivation of a general expression for the surface conductivity of such systems. In particular, the maximum in streaming current versus pH is unambiguously attributed to the presence of an interphasial gradient in polymer segment density following the heterogeneous expansion of the chains within the film upon swelling with increasing pH. A quantitative inspection of the data further suggests that pK values of ionogenic groups in the film as derived from the streaming current and surface conductivity data differ by ∼0.9 pH unit. Such a difference is attributed to the impact of position-dependent hydrophobicity across the film on the degree of ionization of carboxylic sites.


Assuntos
Acrilamidas/química , Polímeros/química , Resinas Acrílicas , Condutividade Elétrica , Eletroquímica/métodos , Eletrólitos/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Estatísticos , Sais/química , Propriedades de Superfície
11.
Environ Sci Technol ; 44(24): 9413-8, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21082825

RESUMO

We report an analysis for the morphology and breaking behavior of deposits of spherical latex particles (1 and 3.6 µm in diameter) at a cylindrical collector in a microfluidic channel fabricated by soft-lithography. In-situ observation of particle deposition over a large range of flow rate conditions evidence the relationship between deposit morphology and mode of particle transport toward the collector. For low Péclet number (Pe), particle deposits are nearly uniform all over the collector surface except at the rear where particles do not attach. Upon increase of Pe, deposits gradually adopt a columnar morphology at the collector stagnation point. These results are qualitatively consistent with previously reported Monte Carlo simulations of deposits formation in stagnation point flow systems. However, these simulations fail to quantitatively predict the observed deposition at the rear of the collector for sufficiently high flow rate. Additional deposit breaking experiments together with numerical evaluations of particle flux around the collector suggest that such "anomalous" deposition at large Pe is significantly governed by concomitant detachment of deposited particles at the stagnation point and the presence of recirculation flow at the collector rear. Finally, kinetics of deposition are discussed in connection with particle size-dependence of deposit breaking features.


Assuntos
Látex/química , Microesferas , Cinética , Técnicas Analíticas Microfluídicas , Tamanho da Partícula , Propriedades de Superfície
12.
J Phys Chem A ; 112(31): 7137-51, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18636700

RESUMO

A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e.g., polysaccharide macromolecules, gel particles). For both the transient and quasi-steady-state regimes, the dependence of k a,d (*) on the thickness of the soft surface layer, the radius of the hard core of the particle, and the kinetic rate constants k a,d for homogeneous ligand solutions is thoroughly discussed within the context of dynamic features for colloidal complex systems.


Assuntos
Coloides/química , Metais/química , Ligantes , Tamanho da Partícula , Polímeros/química , Porosidade , Propriedades de Superfície , Suspensões , Fatores de Tempo
13.
Water Res ; 42(10-11): 2769-77, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18329685

RESUMO

We report an experimental investigation of the electrokinetic properties and size variations of four F-specific bacteriophages of the types MS2, GA, Qbeta and SP (21-30 nm in diameter) over a broad range of pH values (1.5-7.5) and NaNO3 electrolyte concentrations (1-100 mM). The results obtained by dynamic light scattering show that the aggregation of SP and GA particles takes place over the whole range of pH and ionic strength conditions examined. For MS2 phages, the aggregation of MS2 particles is not observed for pH higher than the isoelectric point (pI) and large ionic strengths for which interparticular repulsive electrostatic interactions are however expected to be sufficiently screened. Aggregation of the MS2 phages, dispersed in 1 and 100 mM electrolyte concentration, occurs at pH 4, which basically corresponds to the pI as determined by electrophoresis measurements. The Qbeta particles suspended in solutions of low electrolyte concentrations aggregate at low pH values (pI approximately 3) and, unlike MS2, at large ionic strengths over the whole range of pH conditions considered in this study. These elements allow the determination of the hydrophobic sequence for the four phages SP approximately GA>Qbeta>MS2. Close inspection of the electrokinetic results reveals small to significant variations of the pI values-depending on the phage considered-with respect to the concentration of indifferent NaNO3 electrolyte. This indicates that features other than chemical and electrostatic in nature play a key role in determining the pI and more generally the electrophoretic mobility mu of viral particles. A qualitative interpretation is given and is based on the consideration of inner electro-osmotic flow within the isolated or aggregated particles. The impact of the flow properties within the particles is further in agreement with recent theoretical formalism developed for the electrokinetics of soft multiplayer particles, the phages analyzed here being some illustrative examples. The determination and qualitative interpretation of the surface properties of the viral particles as reported in the current study are commented within the context of water treatment especially concerning viral removal by membrane filtration processes.


Assuntos
Filtração/métodos , Membranas Artificiais , Fagos RNA/química , Difusão/efeitos dos fármacos , Eletrólitos/farmacologia , Eletroforese , Ponto Isoelétrico , Fagos RNA/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Vírion/química
14.
Water Res ; 42(19): 4751-60, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18929388

RESUMO

Adhesion of the bacteria Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET), a polymer widely used within the bottled water industry was measured in two different groundwater solutions. From this, it was found that whilst the percentage cell adhesion for a given strain did not change between groundwater types, substantial variation was obtained between the two bacterial species tested: M. avium (10-30% adhered cells) and C. jejuni (1-2%) and no major variations were measured as a function of groundwater composition for a given strain. To explain this, the interfacial electro-hydrodynamic properties of the bacteria were investigated by microelectrophoresis, with the resultant data analysed on the basis of electrokinetic theory for soft biocolloidal particles. The results obtained showed that M. avium carries a significant volume charge density and that its peripheral layer exhibits limited hydrodynamic flow permeation compared to that of C. jejuni. It was also demonstrated that steric hindrance to flow penetration and the degree of hydrophobicity within/of the outer bacterial interface are larger for M. avium cells. In line with this, the larger amount of M. avium cells deposited onto PET substrates as compared to that of C. jejuni can be explained by hydrophobic attraction and chemical binding between hydrophobic PET and outer soft surface layer of the bacteria. Hydrophobicity of PET was addressed by combining contact angle analyses and force spectroscopy using CH(3)-terminated AFM tip.


Assuntos
Aderência Bacteriana , Campylobacter jejuni/fisiologia , Mycobacterium avium/fisiologia , Polietilenotereftalatos/química , Abastecimento de Água , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia de Força Atômica
15.
ACS Appl Mater Interfaces ; 10(39): 33545-33555, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30192508

RESUMO

Antibiotic resistance in bacterial cells has motivated the scientific community to design new and efficient (bio)materials with targeted bacteriostatic and/or bactericide properties. In this work, a series of polyelectrolyte multilayer films differing in terms of polycation-polyanion combinations are constructed according to the layer-by-layer deposition method. Their capacities to host T4 and φx174 phage particles and maintain their infectivity and bacteriolytic activity are thoroughly examined. It is found that the macroscopic physicochemical properties of the films, which includes film thickness, swelling ratio, or mechanical stiffness (as derived by atomic force microscopy and spectroscopy measurements), do not predominantly control the selectivity of the films for hosting infective phages. Instead, it is evidenced that the intimate electrostatic interactions locally operational between the loaded phages and the polycationic and polyanionic PEM components may lead to phage activity reduction and preservation/enhancement, respectively. It is argued that the underlying mechanism involves the screening of the phage capsid receptors (operational in cell recognition/infection processes) because of the formation of either polymer-phage hetero-assemblies or polymer coating surrounding the bioactive phage surface.


Assuntos
Bacteriófagos/patogenicidade , Materiais Biocompatíveis/química , Bioensaio/métodos , Polímeros/química , Difusão Dinâmica da Luz , Microscopia de Força Atômica , Polieletrólitos
16.
Colloids Surf B Biointerfaces ; 139: 285-93, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26774052

RESUMO

Aggregation tests between bacteria and Polyethyleneimine (PEI) of low (600g/mol) and high (750,000g/mol) molecular weight were performed in order to address the physico-chemical mechanisms underlying the interactions between cationic polymer and bacterial membranes. The selected strain, Schewanella oneidensis MR-1, produces a lipopolysaccharide (LPS) of various lengths depending on the growth conditions. Optical density, bioaggregate size, electrophoretic mobility measurements, TEM and AFM observations, and cell lysis tests (crystal violet release), were collected to describe the PEI-mediated aggregation of LPS-O-antigen-free and LPS-O-antigen-decorated bacteria. The results show that PEI of low molecular weight (600g/mol) fails to aggregate bacteria, whereas PEIs of higher molecular weight (60,000 and 750,000g/mol) lead to flocculation at low polymer concentrations. In addition, the LPS-O antigen bacterial superstructure is shown to act as a protective barrier, thus delaying the harmful effects of the cationic polymer. Despite this protection, the interaction of bacterial membranes with increasing concentrations of PEI leads to a series of deleterious processes including biosurface modification (peeling, membrane permeabilization and/or lysis), aggregation of bacterial cells, and complexation of PEI with both released biosurface fragments and cytoplasmic residues issued from lysis.


Assuntos
Membrana Celular/efeitos dos fármacos , Polietilenoimina/farmacologia , Shewanella/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/ultraestrutura , Relação Dose-Resposta a Droga , Floculação/efeitos dos fármacos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Peso Molecular , Polietilenoimina/química , Shewanella/química , Shewanella/ultraestrutura , Relação Estrutura-Atividade
17.
Water Res ; 46(6): 1838-46, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22285041

RESUMO

In wastewater treatment plants, optimizing bacterial flocculation and bacterial sludge dewatering requires a detailed understanding of the concomitant biological and physico-chemical processes governing the action of flocculating agent on living cells. Here we investigate the interactions between polyethyleneimine (PEI, 60,000g/mol) and Shewanella oneidensis MR-1 lacking or not the lipopolysaccharide (LPS) O-antigen surface structure. Flocculation tests were performed on bacteria with/without LPS O-antigen after being exposed to 0-100mg/L PEI concentrations. Measurements of electrophoretic mobility and bacterial aggregates size were complemented by transmission electron micrographs and atomic force microscopy images. While low PEI concentrations (<20mg/L) lead to flocculation of both bare and LPS O-antigen-decorated bacterial strains, the lysis of bacterial membranes occurred at larger polymer concentrations for the latter, which highlights the protective role of LPS O-antigen against harmful PEI-mediated membrane alterations. Depending on polymer concentration, two types of bacterial aggregates are identified: one that solely integrates bacterial cells, and another that includes both cells and cell residues resulting from lysis (membrane and/or LPS fragments, and inner cell content materials). The latter is expected to significantly contribute to water entrapping in sludge and thus lower dewatering process efficiency.


Assuntos
Extensões da Superfície Celular/efeitos dos fármacos , Polietilenoimina/farmacologia , Shewanella/citologia , Shewanella/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Condutividade Elétrica , Eletroforese , Floculação/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Modelos Moleculares , Antígenos O/metabolismo , Antígenos O/ultraestrutura , Shewanella/ultraestrutura
18.
J Colloid Interface Sci ; 362(2): 439-49, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21788028

RESUMO

Streaming current, surface conductivity and swelling data of poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI) thin films are analyzed on the basis of the theory for diffuse soft interfaces (J.F.L. Duval, R. Zimmermann, A. L. Cordeiro, N. Rein, C. Werner, Langmuir 25 (2009) 10691). Focus is put on ways to unravel the electroosmotic and migration contributions of the measured surface conductivity, which is crucial for appropriate electrokinetic analysis of films carrying high densities of dissociable groups. Results demonstrate that the osmotically-driven swelling of the PAA films with increasing pH is accompanied by an increase in diffuseness for the interphasial polymer segment density distribution. This heterogeneity is particularly marked at low ionic strength with a non-monotonous dependence of the streaming current on pH and the presence of a maximum at pH∼6.5. The analysis of the PEI films evidences heterogeneous swelling with lowering pH, i.e. upon protonation of the amine groups. The characteristic decay length in the interphasial PEI segment density distribution is found to be nearly independent of the pH, which is in line with the moderate swelling determined by ellipsometry. A critical discussion is given on the strengths and limitations of electrokinetics/surface conductivity for quantifying the coupled electrohydrodynamic and structural properties of moderately to highly swollen polyelectrolyte thin films.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrólitos/química , Membranas Artificiais , Polímeros/química , Resinas Acrílicas , Concentração de Íons de Hidrogênio , Estrutura Molecular , Nanoestruturas , Polietilenoimina , Eletricidade Estática
19.
Langmuir ; 25(18): 10691-703, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518102

RESUMO

Streaming current measurements were performed on poly(N-isopropylacrylamide)-co-N-(1-phenylethyl) acrylamide [P(NIPAAm-co-PEAAm)] thermoresponsive thin films above and below the transition temperature of the polymer (i.e., at 22 and 4 degrees C, respectively). Electrokinetic measurements (ionic strength 0.01-10 mM KCl, pH 2.5-9.5 in 1 mM KCl) revealed that the charging of the polymer/aqueous solution interface is determined by unsymmetrical adsorption of hydroxide and hydronium ions onto the Teflon AF substrate that supports the hydrogel film. The magnitude of the streaming current significantly decreased with decreasing temperature, that is, when the hydrogel was swelling. The pH- and ionic strength-dependent data for unswollen and swollen films were interpreted on the basis of the here-reported general theory for the electrokinetics of diffuse soft gel layers. The formalism based on the Debye-Brinkman equation for hydrodynamics and the nonlinear Poisson-Boltzmann equation for electrostatics extends previous theoretical studies by considering the most general situation of a charged gel layer supported by a charged rigid surface. Full analytical expression is provided for the streaming current in the limit of homogeneous distribution of segments under low potential conditions. Numerical analysis of the governing transport and electrostatic equations allows for the computation of streaming current for cases where analytical developments are not possible. The theory successfully reproduces the electrokinetic data for the P(NIPAAm-co-PEAAm) copolymer film at 22 and 4 degrees C over the whole range of pH and ionic strength examined. It is found that the 3-fold increase of the hydrogel film thickness with decreasing temperature from 22 to 4 degrees C (i.e., from 23 to 70 nm as measured by ellipsometry), is in line with homogeneous swelling and an increase of the hydrodynamic penetration length (1/lambdao) by a factor of approximately 1.6. Additionally, the hydrodynamic thicknesses (deltaH) of the swollen and unswollen hydrogels are evaluated in terms of their respective hydrodynamic penetration length and electrosurface characteristics of the supporting Teflon AF surface.


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Polímeros/química , Difusão , Eletrólitos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentração de Íons de Hidrogênio , Hidróxidos , Concentração Osmolar , Politetrafluoretileno , Eletricidade Estática , Temperatura , Viscosidade
20.
Langmuir ; 22(8): 3533-46, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584225

RESUMO

A theory is presented for the electrophoresis of diffuse soft particles in a steady dc electric field. The particles investigated consist of an uncharged impenetrable core and a charged diffuse polyelectrolytic shell, which is to some extent permeable to ions and solvent molecules. The diffuse character of the shell is defined by a gradual distribution of the density of polymer segments in the interspatial region separating the core from the bulk electrolyte solution. The hydrodynamic impact of the polymer chains on the electrophoretic motion of the particle is accounted for by a distribution of Stokes resistance centers. The numerical treatment of the electrostatics includes the possibility of partial dissociation of the hydrodynamically immobile ionogenic groups distributed throughout the shell as well as specific interaction between those sites with ions from the background electrolyte other than charge-determining ions. Electrophoretic mobilities are computed on the basis of an original numerical scheme allowing rigorous evaluation of the governing transport and electrostatic equations derived following the strategy reported by Ohshima, albeit within the restricted context of a discontinuous chain distribution. Attention is particularly paid to the influence of the type of distribution adopted on the electrophoretic mobility of the particle as a function of its size, charge, degree of permeability, and solution composition. The results are systematically compared with those obtained with a discontinuous representation of the interface. The theory constitutes a basis for interpreting electrophoretic mobilities of heterogeneous systems such as environmental or biological colloids or swollen/deswollen microgel particles.


Assuntos
Eletroforese/métodos , Biofísica/métodos , Coloides , Difusão , Eletroquímica/métodos , Eletrólitos , Escherichia coli/metabolismo , Íons , Cinética , Modelos Estatísticos , Modelos Teóricos , Permeabilidade , Polímeros/química , Solventes/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA