Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 10(6): 2435-44, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23611705

RESUMO

Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition-fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer-siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and metastases.


Assuntos
Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia em Gel , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Biomacromolecules ; 12(12): 4301-10, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22053777

RESUMO

Poly(ethylene glycol) (PEG) conjugates of Dicer-substrate small interfering RNA (DsiRNA) have been prepared to investigate a new siRNA release strategy. 3'-sense or 5'-antisense thiol-modified, blunt-ended DsiRNAs, inhibiting enhanced green fluorescent protein (eGFP) expression, were covalently conjugated to PEG with varying molecular weights (2, 10, and 20 kg/mol) through a stable thioether bond using a Michael addition reaction. The DsiRNA conjugates with 2 kg/mol PEG (both 3'-sense or 5'-antisense strand conjugated) and the 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA were efficiently cleaved by recombinant human Dicer to 21-mer siRNA, as determined by gel electrophoresis. Importantly, 2 and 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA showed potent gene silencing activity in human neuroblastoma (SH-EP) cells, stably expressing eGFP, at both the mRNA and protein levels. Moreover, the 10 kg/mol PEG conjugates of the 3'-sense strand of DsiRNA were less immunogenic when compared with the unmodified DsiRNA, determined via an immune stimulation assay on human peripheral blood mononuclear cells.


Assuntos
Proteínas de Fluorescência Verde/genética , Polietilenoglicóis/química , RNA Interferente Pequeno/química , Transfecção/métodos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Peso Molecular , Neuroblastoma/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA