Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(23): 7423-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261509

RESUMO

Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biota , Consórcios Microbianos , Panicum/metabolismo , Aerobiose , Bactérias/classificação , Biomassa , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lignina/metabolismo , Dados de Sequência Molecular , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
2.
Environ Microbiol ; 15(9): 2573-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23763762

RESUMO

Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Celulose/metabolismo , Consórcios Microbianos/fisiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biocombustíveis , Biomassa , Glicosídeo Hidrolases/metabolismo , Consórcios Microbianos/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Solo , Xilanos/metabolismo
3.
Appl Environ Microbiol ; 78(7): 2316-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22287013

RESUMO

Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [(13)C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the (13)C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or (12)C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the (13)C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community.


Assuntos
Bactérias/classificação , Isótopos de Carbono/metabolismo , Celulose/metabolismo , Centrifugação Isopícnica/métodos , DNA Fúngico/análise , Fungos/classificação , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Fúngico/genética , Ecossistema , Fungos/genética , Geografia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Solo/análise , Solo/química , Água
4.
Biotechnol Bioeng ; 109(5): 1140-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22125273

RESUMO

Bacteria modulate glycoside hydrolase expression in response to the changes in the composition of lignocellulosic biomass. The response of switchgrass-adapted thermophilic bacterial consortia to perturbation with a variety of biomass substrates was characterized to determine if bacterial consortia also responded to changes in biomass composition. Incubation of the switchgrass-adapted consortia with these alternative substrates produced shifts in glycoside hydrolase activities and bacterial community composition. Substantially increased endoglucanase activity was observed upon incubation with microcrystalline cellulose and trifluororacetic acid-pretreated switchgrass. In contrast, culturing the microbial consortia with ionic liquid-pretreated switchgrass increased xylanase activity dramatically. Microbial community analyses of these cultures indicated that the increased endoglucanase activity correlated with an increase in bacteria related to Rhodothermus marinus. Inclusion of simple organic substrates in the culture medium abrogated glycoside hydrolase activity and enriched for bacteria related to Thermus thermophilus. These results demonstrate that the composition of biomass substrates influences the glycoside hydrolase activities and community composition of biomass-deconstructing bacterial consortia.


Assuntos
Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Biota , Glicosídeo Hidrolases/metabolismo , Panicum/microbiologia , Bactérias/metabolismo , Biomassa , Celulose/metabolismo
5.
Appl Environ Microbiol ; 77(2): 586-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097594

RESUMO

Members of the phylum Acidobacteria are among the most abundant bacteria in soil. Although they have been characterized as versatile heterotrophs, it is unclear if the types and availability of organic resources influence their distribution in soil. The potential for organic resources to select for different acidobacteria was assessed using molecular and cultivation-based approaches with agricultural and managed grassland soils in Michigan. The distribution of acidobacteria varied with the carbon content of soil: the proportion of subdivision 4 sequences was highest in agricultural soils (ca. 41%) that contained less carbon than grassland soils, where the proportions of subdivision 1, 3, 4, and 6 sequences were similar. Either readily oxidizable carbon or plant polymers were used as the sole carbon and energy source to isolate heterotrophic bacteria from these soils. Plant polymers increased the diversity of acidobacteria cultivated but decreased the total number of heterotrophs recovered compared to readily oxidizable carbon. Two phylogenetically novel Acidobacteria strains isolated on the plant polymer medium were characterized. Strains KBS 83 (subdivision 1) and KBS 96 (subdivision 3) are moderate acidophiles with pH optima of 5.0 and 6.0, respectively. Both strains grew slowly (µ = 0.01 h(-1)) and harbored either 1 (strain KBS 83) or 2 (strain KBS 96) copies of the 16S rRNA encoding gene-a genomic characteristic typical of oligotrophs. Strain KBS 83 is a microaerophile, growing optimally at 8% oxygen. These metabolic characteristics help delineate the niches that acidobacteria occupy in soil and are consistent with their widespread distribution and abundance.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , Plantas/química , Polímeros/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Michigan , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Nat Microbiol ; 3(1): 99-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109478

RESUMO

Cultivation of microbial consortia provides low-complexity communities that can serve as tractable models to understand community dynamics. Time-resolved metagenomics demonstrated that an aerobic cellulolytic consortium cultivated from compost exhibited community dynamics consistent with the definition of an endogenous heterotrophic succession. The genome of the proposed pioneer population, 'Candidatus Reconcilibacillus cellulovorans', possessed a gene cluster containing multidomain glycoside hydrolases (GHs). Purification of the soluble cellulase activity from a 300litre cultivation of this consortium revealed that ~70% of the activity arose from the 'Ca. Reconcilibacillus cellulovorans' multidomain GHs assembled into cellulase complexes through glycosylation. These remarkably stable complexes have supramolecular structures for enzymatic cellulose hydrolysis that are distinct from cellulosomes. The persistence of these complexes during cultivation indicates that they may be active through multiple cultivations of this consortium and act as public goods that sustain the community. The provision of extracellular GHs as public goods may influence microbial community dynamics in native biomass-deconstructing communities relevant to agriculture, human health and biotechnology.


Assuntos
Bactérias/classificação , Bactérias/enzimologia , Celulase/análise , Celulose/metabolismo , Consórcios Microbianos/fisiologia , Complexos Multienzimáticos/análise , Filogenia , Bactérias/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Evolução Biológica , Celulase/isolamento & purificação , Compostagem , Genoma Bacteriano/genética , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/isolamento & purificação , Glicosilação , Processos Heterotróficos , Metagenômica , Modelos Biológicos , Complexos Multienzimáticos/isolamento & purificação , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA