Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomatter ; 3(3)2013.
Artigo em Inglês | MEDLINE | ID: mdl-23881040

RESUMO

Zinc oxide (ZnO) is a widely used commercial material that is finding use in wound healing applications due to its antimicrobial properties. Our study demonstrates a novel approach for coating ZnO with precise thickness control onto 20 nm and 100 nm pore diameter anodized aluminum oxide using atomic layer deposition (ALD). ZnO was deposited throughout the nanoporous structure of the anodized aluminum oxide membranes. An 8 nm-thick coating of ZnO, previously noted to have antimicrobial properties, was cytotoxic to cultured macrophages. After 48 h, ZnO-coated 20 nm and 100 nm pore anodized aluminum oxide significantly decreased cell viability by ≈65% and 54%, respectively, compared with cells grown on uncoated anodized aluminum oxide membranes and cells grown on tissue culture plates. Pore diameter (20-200 nm) did not influence cell viability.


Assuntos
Óxido de Alumínio/química , Macrófagos/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/toxicidade , Relação Dose-Resposta a Droga , Humanos , Teste de Materiais , Membranas Artificiais , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/toxicidade , Propriedades de Superfície , Óxido de Zinco/química
2.
ACS Nano ; 5(6): 4600-6, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21545142

RESUMO

Sequential infiltration synthesis (SIS), combining stepwise molecular assembly reactions with self-assembled block copolymer (BCP) substrates, provides a new strategy to pattern nanoscopic materials in a controllable way. The selective reaction of a metal precursor with one of the pristine BCP domains is the key step in the SIS process. Here we present a straightforward strategy to selectively modify self-assembled polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCP thin films to enable the SIS of a variety of materials including SiO(2), ZnO, and W. The selective and controlled interaction of trimethyl aluminum with carbonyl groups in the PMMA polymer domains generates Al-CH(3)/Al-OH sites inside the BCP scaffold which can seed the subsequent growth of a diverse range of materials without requiring complex block copolymer design and synthesis.


Assuntos
Nanotecnologia/métodos , Polímeros/química , Alumínio/química , Carbono/química , Teste de Materiais , Nanoestruturas/química , Oxigênio/química , Transição de Fase , Polimetil Metacrilato/química , Poliestirenos/química , Silício/química , Dióxido de Silício/química , Temperatura , Viscosidade
3.
Philos Trans A Math Phys Eng Sci ; 368(1917): 2033-64, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20308114

RESUMO

Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications.


Assuntos
Óxido de Alumínio/química , Materiais Revestidos Biocompatíveis/química , Adsorção , Antibacterianos/química , Plaquetas/metabolismo , Desenho de Equipamento , Escherichia coli/metabolismo , Humanos , Teste de Materiais , Nanoestruturas/química , Nanotecnologia/métodos , Platina/química , Polietilenoglicóis/química , Staphylococcus aureus/metabolismo , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA