Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(10): 4408-4418, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36597885

RESUMO

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.


Assuntos
Neoplasias da Mama , Hidrogéis , Humanos , Feminino , Hidrogéis/farmacologia , Hidrogéis/química , Elastina/química , Neoplasias da Mama/tratamento farmacológico , Materiais Biocompatíveis , Peptídeos , Matriz Extracelular
2.
J Mater Sci Mater Med ; 28(5): 78, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28386854

RESUMO

The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL) bioassembly is based on "bottom-up" approach, which considers assembly of small cellularized blocks. The aim of this work was to evaluate proliferation and differentiation of human bone marrow stromal cells (HBMSCs) and endothelial progenitor cells (EPCs) in two and three dimensions (2D, 3D) using a LBL assembly of polylactic acid (PLA) scaffolds fabricated by 3D printing. 2D experiments have shown maintain of cell viability on PLA, especially when a co-cuture system was used, as well as adequate morphology of seeded cells. Early osteoblastic and endothelial differentiations were observed and cell proliferation was increased after 7 days of culture. In 3D, cell migration was observed between layers of LBL constructs, as well as an osteoblastic differentiation. These results indicate that LBL assembly of PLA layers could be suitable for BTE, in order to promote homogenous cell distribution inside the scaffold and gene expression specific to the cells implanted in the case of co-culture system.


Assuntos
Osso e Ossos/patologia , Membranas Artificiais , Poliésteres/química , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteoblastos/metabolismo , Osteogênese , Oxigênio/química , Fenótipo , Porosidade , Impressão Tridimensional , Ratos , Alicerces Teciduais
3.
J Mater Sci Mater Med ; 25(7): 1781-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668270

RESUMO

Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.


Assuntos
Materiais Biocompatíveis/química , Colágeno Tipo I/química , Fibroblastos/citologia , Animais , Bovinos , Adesão Celular , Proliferação de Células , Colágeno/química , Fibroblastos/metabolismo , Humanos , Ácido Láctico/química , Microscopia de Fluorescência , Poliésteres , Polímeros/química , Proteínas Recombinantes/química , Pele/metabolismo , Propriedades de Superfície , Engenharia Tecidual/métodos , Viscosidade
4.
Biomater Adv ; 164: 213985, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39146606

RESUMO

Bone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.


Assuntos
Fosfatos de Cálcio , Vidro , Neovascularização Fisiológica , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Humanos , Poliésteres/química , Poliésteres/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Vidro/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Osso e Ossos/irrigação sanguínea , Osso e Ossos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Porosidade , Proliferação de Células/efeitos dos fármacos
5.
ACS Appl Mater Interfaces ; 16(38): 50139-50146, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285613

RESUMO

The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.


Assuntos
Hidrogéis , Polietilenoglicóis , Impressão Tridimensional , Linfócitos T , Hidrogéis/química , Humanos , Linfócitos T/citologia , Linfócitos T/imunologia , Polietilenoglicóis/química , Proliferação de Células/efeitos dos fármacos , Heparina/química , Células Cultivadas
6.
Biomacromolecules ; 14(8): 2690-702, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23805782

RESUMO

Research on surface modification of polymeric materials to guide the cellular activity in biomaterials designed for tissue engineering applications has mostly focused on the use of natural extracellular matrix (ECM) proteins and short peptides, such as RGD. However, the use of engineered proteins can gather the advantages of these strategies and avoid the main drawbacks. In this study, recombinant engineered proteins called elastin-like recombinamers (ELRs) have been used to functionalize poly(lactic) acid (PLA) model surfaces. The structure of the ELRs has been designed to include the integrin ligand RGDS and the cross-linking module VPGKG. Surface functionalization has been characterized and optimized by means of ELISA and atomic force microscopy (AFM). The results suggest that ELR functionalization creates a nonfouling canvas able to restrict unspecific adsorption of proteins. Moreover, AFM analysis reveals the conformation and disposition of ELRs on the surface. Biological performance of PLA surfaces functionalized with ELRs has been studied and compared with the use of short peptides. Cell response has been assessed for different functionalization conditions in the presence and absence of the bovine serum albumin (BSA) protein, which could interfere with the surface-cell interaction by adsorbing on the interface. Studies have shown that ELRs are able to elicit higher rates of cell attachment, stronger cell anchorages and faster levels of proliferation than peptides. This work has demonstrated that the use of engineered proteins is a more efficient strategy to guide the cellular activity than the use of short peptides, because they not only allow for better cell attachment and proliferation, but also can provide more complex properties such as the creation of nonfouling surfaces.


Assuntos
Adesão Celular , Materiais Revestidos Biocompatíveis/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Animais , Proliferação de Células , Células Cultivadas , Elastina/química , Ensaio de Imunoadsorção Enzimática , Ácido Láctico/química , Células-Tronco Mesenquimais/fisiologia , Microscopia de Força Atômica , Poliésteres , Polímeros/química , Engenharia de Proteínas , Ratos , Proteínas Recombinantes/química , Propriedades de Superfície
7.
Sci Total Environ ; 889: 164283, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209732

RESUMO

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.


Assuntos
Cloro , Nylons , Osmose , Nylons/química , Cloretos , Água , Cloreto de Sódio
8.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37342003

RESUMO

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Assuntos
Miócitos Cardíacos , Polímeros , Polímeros/química , Pirróis/química , Diferenciação Celular
9.
Int J Biol Macromol ; 238: 124117, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36948340

RESUMO

This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Ácido Láctico/química , Endopeptidase K , Alginatos/química
10.
ACS Appl Bio Mater ; 6(9): 3889-3901, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37608579

RESUMO

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.


Assuntos
Hidrogéis , Ácido Láctico , Preparações de Ação Retardada/farmacologia , Endopeptidase K , Poliésteres , Alginatos
11.
Eur Cell Mater ; 24: 90-106; discussion 106, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828988

RESUMO

Smart biomaterials play a key role when aiming at successful tissue repair by means of regenerative medicine approaches, and are expected to contain chemical as well as mechanical cues that will guide the regenerative process. Recent advances in the understanding of stem cell biology and mechanosensing have shed new light onto the importance of the local microenvironment in determining cell fate. Herein we report the biological properties of a bioactive, biodegradable calcium phosphate glass/polylactic acid composite biomaterial that promotes bone marrow-derived endothelial progenitor cell (EPC) mobilisation, differentiation and angiogenesis through the creation of a controlled bone healing-like microenvironment. The angiogenic response is triggered by biochemical and mechanical cues provided by the composite, which activate two synergistic cell signalling pathways: a biochemical one mediated by the calcium-sensing receptor and a mechanosensitive one regulated by non-muscle myosin II contraction. Together, these signals promote a synergistic response by activating EPCs-mediated VEGF and VEGFR-2 synthesis, which in turn promote progenitor cell homing, differentiation and tubulogenesis. These findings highlight the importance of controlling microenvironmental cues for stem/progenitor cell tissue engineering and offer exciting new therapeutical opportunities for biomaterial-based vascularisation approaches and clinical applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Medula Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Microambiente Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Vidro/química , Ácido Láctico/química , Mecanotransdução Celular/fisiologia , Miosina Tipo II/metabolismo , Poliésteres , Polímeros/química , Ratos , Ratos Endogâmicos Lew , Receptores de Detecção de Cálcio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Acta Biomater ; 151: 264-277, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981686

RESUMO

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signaling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.


Assuntos
Células Progenitoras Endoteliais , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Cálcio/metabolismo , Fosfatos de Cálcio/farmacologia , Fibrina/farmacologia , Humanos , Microfluídica , Neovascularização Fisiológica , Osteopontina/metabolismo , Poliésteres/farmacologia , Ratos , Engenharia Tecidual , Alicerces Teciduais
13.
Adv Wound Care (New Rochelle) ; 10(5): 234-256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32320364

RESUMO

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas , Nanotecnologia/métodos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/farmacologia , Doença Crônica , Humanos
14.
J Control Release ; 330: 669-683, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33388340

RESUMO

We examine different approaches for the controlled release of L-lactate, which is a signaling molecule that participates in tissue remodeling and regeneration, such as cardiac and muscle tissue. Robust, flexible, and self-supported 3-layers films made of two spin-coated poly(lactic acid) (PLA) layers separated by an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layer, are used as loading and delivery systems. Films with outer layers prepared using homochiral PLA and with nanoperforations of diameter 146 ± 70 experience more bulk erosion, which also contributes to the release of L-lactic acid, than those obtained using heterochiral PLA and with nanoperforations of diameter 66 ± 24. Moreover, the release of L-lactic acid as degradation product is accelerated by applying biphasic electrical pulses. The four approaches used for loading extra L-lactate in the 3-layered films were: incorporation of L-lactate at the intermediate PEDOT layer as primary dopant agent using (1) organic or (2) basic water solutions as reaction media; (3) substitution at the PEDOT layer of the ClO4- dopant by L-lactate using de-doping and re-doping processes; and (4) loading of L-lactate at the outer PLA layers during the spin-coating process. Electrical stimuli were applied considering biphasic voltage pulses and constant voltages (both negative and positive). Results indicate that the approach used to load the L-lactate has a very significant influence in the release regulation process, affecting the concentration of released L-lactate up to two orders of magnitude. Among the tested approaches, the one based on the utilization of the outer layers for loading, approach (4), can be proposed for situations requiring prolonged and sustained L-lactate release over time. The biocompatibility and suitability of the engineered films for cardiac tissue engineering has also been confirmed using cardiac cells.


Assuntos
Poliésteres , Polímeros , Preparações de Ação Retardada , Estimulação Elétrica , Ácido Láctico , Engenharia Tecidual
15.
ACS Appl Mater Interfaces ; 13(37): 44108-44123, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494824

RESUMO

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Matriz Extracelular Descelularizada/química , Células-Tronco Mesenquimais/química , Alicerces Teciduais/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Modelos Biológicos , Estudo de Prova de Conceito , Microambiente Tumoral/fisiologia
16.
Mater Sci Eng C Mater Biol Appl ; 118: 111420, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255021

RESUMO

In the current work, our purpose was based on the assessment of bioactive chitosan (CS)/Poly(ethylene glycol) diacrylate (PEGDA) based scaffolds ability to stimulate in vitro angiogenesis process. The bioactivation of the scaffolds was accomplished by using organic (BMP-2 peptide) and inorganic (hydroxyapatite nanoparticles) cues. In particular, the properties of the materials in terms of biological response promotion on human umbilical vein endothelial cells (HUVECs) were studied by using in vitro angiogenesis tests based on cell growth and proliferation. Furthermore, our interest was to examine the scaffolds capability to modulate two important steps involved in angiogenesis process: migration and tube formation of cells. Our data underlined that bioactive signals on CS/PEGDA scaffolds surface induce a desirable effect on angiogenic response concerning angiogenic marker expression (CD-31) and endothelial tissue formation (tube formation). Taken together, the results emphasized the concept that bioactive CS/PEGDA scaffolds may be novel implants for stimulating neovascularization of tissue-engineered constructs in regenerative medicine field.


Assuntos
Quitosana , Durapatita , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica , Osteogênese , Polietilenoglicóis , Engenharia Tecidual , Alicerces Teciduais
17.
Adv Wound Care (New Rochelle) ; 10(6): 301-316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32602814

RESUMO

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a good in vitro bioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.


Assuntos
Diabetes Mellitus Experimental/patologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Sobrevivência Celular/efeitos dos fármacos , Análise Custo-Benefício , Regulação da Expressão Gênica/efeitos dos fármacos , Tecido de Granulação/patologia , Masculino , Camundongos , Camundongos Knockout , Nanofibras/ultraestrutura , Pele/patologia
18.
Biofabrication ; 12(2): 025008, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31805546

RESUMO

Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e. they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.


Assuntos
Gelatina/química , Hidrogéis/química , Mucosa Intestinal/citologia , Metacrilatos/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Células CACO-2 , Adesão Celular , Proliferação de Células , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação
19.
PLoS One ; 14(11): e0224661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725745

RESUMO

Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20-90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.


Assuntos
Materiais Biomiméticos/química , Fibroblastos/metabolismo , Nanofibras/química , Poliésteres/química , Manguito Rotador , Alicerces Teciduais/química , Humanos , Teste de Materiais , Lesões do Manguito Rotador/terapia
20.
Colloids Surf B Biointerfaces ; 177: 121-129, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716697

RESUMO

Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface.


Assuntos
Colágeno Tipo IV/química , Células Epiteliais/citologia , Epitélio Corneano/citologia , Poliésteres/química , Células-Tronco/citologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA