Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35262176

RESUMO

Hagfish represent the oldest extant connection to the ancestral vertebrates, but their physiology is not well understood. Using behavioural (video), physiological (respirometry, flow measurements), classical morphological (dissection, silicone injection) and modern imaging approaches (micro-MRI, DICE micro-CT), we examined the interface between feeding and the unique breathing mechanism (nostril opening, high-frequency velum contraction, low-frequency gill pouch contraction and pharyngo-cutaneous duct contraction) in the Pacific hagfish, Eptatretus stoutii. A video tour via micro-MRI is presented through the breathing and feeding passages. We have reconciled an earlier disagreement as to the position of the velum chamber, which powers inhalation through the nostril, placing it downstream of the merging point of the food and water passage, such that the oronasal septum terminates at the anterior end of the velum chamber. When feeding occurs by engulfment of large chunks by the dental plates, food movement through the chamber may transiently interfere with breathing. Swallowing is accelerated by peristaltic body undulation involving the ventral musculature, and is complete within 5 s. After a large meal (anchovy, 20% body mass), hagfish remain motionless, defaecating bones and scales at 1.7 days and an intestinal peritrophic membrane at 5 days. O2 consumption rate approximately doubles within 1 h of feeding, remaining elevated for 12-24 h. This is achieved by combinations of elevated O2 utilization and ventilatory flow, the latter caused by varying increases in velar contraction frequency and stroke volume. Additional imaging casts light on the reasons for the trend for greater O2 utilization by more posterior pouches and the pharyngo-cutaneous duct in fasted hagfish.


Assuntos
Feiticeiras (Peixe) , Animais , Brânquias/fisiologia , Feiticeiras (Peixe)/fisiologia , Oxigênio , Consumo de Oxigênio , Respiração
2.
J Fish Biol ; 94(2): 261-276, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30549032

RESUMO

We made anatomical and physiological observations of the breathing mechanisms in Pacific hagfish Eptatretus stoutii, with measurements of nostril flow and pressure, mouth and pharyngo-cutaneous duct (PCD) pressure and velum and heart impedance and observations of dye flow patterns. Resting animals frequently exhibit spontaneous apnea. During normal breathing, water flow is continuous at a high rate (~125 ml kg-1 min-1 at 12°C) powered by a two-phase unidirectional pumping system with a fast suction pump (the velum, ~22 min-1 ) for inhalation through the single nostril and a much slower force pump (gill pouches and PCD ~4.4 min-1 ) for exhalation. The mouth joins the pharynx posterior to the velum and plays no role in ventilation at rest or during swimming. Increases in flow up to >400 ml kg-1 min-1 can be achieved by increases in both velum frequency and stroke volume and the ventilatory index (product of frequency x nostril pressure amplitude) provides a useful proxy for ventilatory flow rate. Two types of coughing (flow reversals) are described. During spontaneous swimming, ventilatory pressure and flow pulsatility becomes synchronised with rhythmic body undulations.


Assuntos
Brânquias/fisiologia , Feiticeiras (Peixe)/fisiologia , Respiração , Animais , Feiticeiras (Peixe)/anatomia & histologia , Pressão , Sistema Respiratório/anatomia & histologia , Natação
3.
Environ Pollut ; 346: 123599, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369093

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are emerging pollutants in the ocean, but their transfer and toxicity along the food chains are unclear. In this study, a marine rotifer (Brachionus plicatilis)-marine medaka (Oryzias melastigma) food chain was constructed to evaluate the transfer of polystyrene MPs and NPs (70 nm, 500 nm, and 2 µm, 2000 µg/L) and toxicity of 70 nm PS-NPs (0, 20, 200, and 2000 µg/L) on marine medaka after long-term food chain exposure. The results showed that the amount of 70 nm NPs accumulated in marine medaka was 1.24 µg/mg, which was significantly higher than that of 500 nm NPs (0.87 µg/mg) and 2 µm MP (0.69 µg/mg). Long-term food chain exposure to NPs caused microflora dysbiosis, resulting in activation of toll-like receptor 4 (TLR4) pathway, which induced liver inflammation. Moreover, NPs food chain exposure increased liver and muscle tissue triglyceride and lactate content, but decreased the protein, sugar, and glycogen content. NPs food chain exposure impaired reproductive function and inhibited offspring early development, which might pose a threat to the sustainability of marine medaka population. Overall, the study revealed the transfer of MPs and NPs and the effects of NPs on marine medaka along the food chain.


Assuntos
Oryzias , Rotíferos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Oryzias/fisiologia , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rotíferos/metabolismo , Poliestirenos/toxicidade
4.
J Hazard Mater ; 449: 131070, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840989

RESUMO

Micro/nanoplastics (MPs/NPs) have attracted global attention for their potential adverse impacts on marine ecosystems. This study investigated the impacts of MPs/NPs (70 nm, 500 nm, and 2 µm) on population growth and life-history traits of marine rotifer (Brachionus plicatilis), and further explored the differences from the aspects of nutrient accumulation and metabolomic profiles. The results showed that 200 and 2000 µg/L 70 nm NPs significantly suppressed population growth, and negatively affected life span, the first spawning and breeding time, and fecundity in F0-F2 generation rotifers. Whereas 500 nm NPs and 2 µm MPs showed no effect on population growth 200 µg/L and only changed the life-history traits at the highest concentration. Moreover, 70 nm NPs were more easily accumulated in the rotifers and reduced food ingestion and nutrient accumulation, which caused more severe disruption on purine-pyrimidine metabolism, tricarboxylic acid cycle, and protein synthesis pathway compared to 500 nm NPs. Thus, the smaller the size of the plastic particles, the stronger the toxicity to the rotifers. This study provided new insights into the toxicity of MPs/NPs on marine zooplankton and proposed that metabolomics was powerful to explore the toxicity mechanisms of MPs/NPs.


Assuntos
Microplásticos , Rotíferos , Animais , Plásticos , Ecossistema , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA