Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(12): 5362-5368, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930285

RESUMO

Protein-based biologics are highly suitable for drug development as they exhibit low toxicity and high specificity for their targets. However, for therapeutic applications, biologics must often be formulated to elevated concentrations, making insufficient solubility a critical bottleneck in the drug development pipeline. Here, we report an ultrahigh-throughput microfluidic platform for protein solubility screening. In comparison with previous methods, this microfluidic platform can make, incubate, and measure samples in a few minutes, uses just 20 µg of protein (>10-fold improvement), and yields 10,000 data points (1000-fold improvement). This allows quantitative comparison of formulation excipients, such as sodium chloride, polysorbate, histidine, arginine, and sucrose. Additionally, we can measure how solubility is affected by the combinatorial effect of multiple additives, find a suitable pH for the formulation, and measure the impact of mutations on solubility, thus enabling the screening of large libraries. By reducing material and time costs, this approach makes detailed multidimensional solubility optimization experiments possible, streamlining drug development and increasing our understanding of biotherapeutic solubility and the effects of excipients.


Assuntos
Excipientes , Microfluídica , Solubilidade , Polissorbatos , Proteínas
2.
Small ; 18(34): e2200180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35790106

RESUMO

The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.


Assuntos
Microgéis , Materiais Biocompatíveis/química , Hidrogéis/química , Microfluídica , Medicina Regenerativa
3.
Nat Commun ; 14(1): 684, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755024

RESUMO

The formation of biomolecular condensates through phase separation from proteins and nucleic acids is emerging as a spatial organisational principle used broadly by living cells. Many such biomolecular condensates are not, however, homogeneous fluids, but possess an internal structure consisting of distinct sub-compartments with different compositions. Notably, condensates can contain compartments that are depleted in the biopolymers that make up the condensate. Here, we show that such double-emulsion condensates emerge via dynamically arrested phase transitions. The combination of a change in composition coupled with a slow response to this change can lead to the nucleation of biopolymer-poor droplets within the polymer-rich condensate phase. Our findings demonstrate that condensates with a complex internal architecture can arise from kinetic, rather than purely thermodynamic driving forces, and provide more generally an avenue to understand and control the internal structure of condensates in vitro and in vivo.


Assuntos
Ácidos Nucleicos , Proteínas , Biopolímeros , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA