Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 26(6): 199, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26109452

RESUMO

Multi-walled carbon nanotube (MWCNT)-Bioglass (BG) matrix composite was fabricated using a facile and scalable aqueous colloidal processing method without using any surfactants followed by spark plasma sintering (SPS) consolidation. The individual MWCNTs were initially uniformly dispersed in water and then entirely immobilized on the BG particles during the colloidal processing, avoiding their common re-agglomeration during the water-removal and drying step, which guaranteed their uniform dispersion within the dense BG matrix after the consolidation process. SPS was used as a fast sintering technique to minimise any damage to the MWCNT structure during the high-temperature consolidation process. The electrical conductivity of BG increased by 8 orders of magnitude with the addition of 6.35 wt% of MWCNTs compared to pure BG. Short-duration tests were used in the present study as a preliminary evaluation to understand the effect of incorporating MWCNTs on osteoblast-like cells. The analysed cell proliferation, viability and phenotype expression of MG-63 cells showed inhibition on 45S5 Bioglass(®)-MWCNT composite surfaces.


Assuntos
Cerâmica/química , Vidro/química , Nanotubos de Carbono/química , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Coloides , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Osteoblastos/citologia , Propriedades de Superfície , Engenharia Tecidual , Alicerces Teciduais/química
2.
Acta Biomater ; 52: 81-91, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940161

RESUMO

Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. STATEMENT OF SIGNIFICANCE: Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration. CNTs were incorporated in elastomeric polymers in a facile and reproducible approach. Polymer-CNT materials were able to construct complicated scaffold structures by injecting the prepolymer into a mold and crosslinking the prepolymer under ultraviolet light. CNTs enhanced electrical conductivity and structural support of elastomeric polymers. Hybrid polymeric scaffolds containing 0.5wt% CNTs increased the maturation of cardiac tissues fabricated on them compared to pure polymeric scaffolds. The cardiac tissues on hybrid polymer-CNT scaffolds showed earlier beating than those on pure polymer scaffolds. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such neural and skeletal muscle tissues. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such as neural and skeletal muscle tissues.


Assuntos
Elastômeros/química , Miócitos Cardíacos/fisiologia , Nanotubos de Carbono/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Materiais Biocompatíveis/síntese química , Células Cultivadas , Módulo de Elasticidade , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Miócitos Cardíacos/citologia , Nanotubos de Carbono/ultraestrutura , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual/métodos
3.
Acta Biomater ; 31: 134-143, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621696

RESUMO

Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1Hz; voltage, 3V; duration, 10ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications. STATEMENT OF SIGNIFICANCE: Dielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy.


Assuntos
Corpos Embrioides/citologia , Coração/crescimento & desenvolvimento , Hidrogéis/química , Nanotubos de Carbono/química , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Anisotropia , Materiais Biocompatíveis/química , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , DNA Complementar/metabolismo , Eletrodos , Gelatina/química , Camundongos , Microscopia de Força Atômica , Polímeros/química , Regeneração , Estresse Mecânico , Engenharia Tecidual/métodos , Troponina T/química
4.
Adv Mater ; 25(29): 4028-34, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23798469

RESUMO

Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with cells cultured on pristine and randomly distributed CNTs in GelMA hydrogels.


Assuntos
Materiais Biocompatíveis/síntese química , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Engenharia Tecidual/instrumentação , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/fisiologia , Módulo de Elasticidade , Condutividade Elétrica , Eletroforese/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Conformação Molecular , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA