Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1859(10): 1930-1940, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28642042

RESUMO

Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-ß-cyclodextrin (HPßCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPßCD (BUD:HPßCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPßCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPßCD extracted cholesterol similarly to HPßCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPßCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPßCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPßCD was complexed with budesonide as compared with HPßCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPßCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Budesonida/farmacologia , Lipídeos de Membrana/metabolismo , Membranas/efeitos dos fármacos , Células A549 , Biofísica , Linhagem Celular Tumoral , Colesterol/metabolismo , Ciclodextrinas/farmacologia , Difenilexatrieno/farmacologia , Fluoresceínas/farmacologia , Corantes Fluorescentes/farmacologia , Humanos , Inflamação/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Lipossomas Unilamelares/metabolismo
2.
Electrophoresis ; 37(20): 2685-2691, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27396918

RESUMO

Small interfering RNA (siRNA) inducing gene silencing has great potential to treat many human diseases. To ensure effective siRNA delivery, it must be complexed with an appropriate vector, generally nanoparticles. The nanoparticulate complex requires an optimal physiochemical characterization and the complexation efficiency has to be precisely determined. The methods usually used to measure complexation in gel electrophoresis and RiboGreen® fluorescence-based assay. However, those approaches are not automated and present some drawbacks such as the low throughput and the use of carcinogenic reagents. The aim of this study is to develop a new simple and fast method to accurately quantify the complexation efficiency. In this study, capillary electrophoresis (CE) was used to determine the siRNA complexation with cationic liposomes. The short-end injection mode applied enabled siRNA detection in less than 5 min. Moreover, the CE technique offers many advantages compared with the other classical methods. It is automated, does not require sample preparation and expensive reagents. Moreover, no mutagenic risk is associated with the CE approach since no carcinogenic product is used. Finally, this methodology can also be extended for the characterization of other types of nanoparticles encapsulating siRNA, such as cationic polymeric nanoparticles.


Assuntos
Eletroforese Capilar/métodos , Lipossomos/química , Nanopartículas/química , RNA Interferente Pequeno/química , Calibragem , Cátions/análise , Cátions/química , Humanos , Lipossomos/análise , Nanopartículas/análise , RNA Interferente Pequeno/análise
3.
Biomacromolecules ; 16(3): 769-79, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25603322

RESUMO

RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium- and morpholino-functionalized biocompatible and biodegradable polycarbonate vectors. The impact of different functions (morpholino-, guanidinium-, hydrophobic groups) of the architecture (linear homopolymer to dumbbell-shape) and of the molecular weight of these copolymers on their capacity to form polyplexes and to decrease the expression of two epigenetic regulators of gene expression, HDAC7 and HDAC5, was evaluated. The use of one of these polymers combining morpholine and guanidine functions at the ratio >1 and hydrophobic trimethylene carbonate groups showed a significant decrease of mRNA and protein level in HeLa cells, similar to PEI. These results highlight the potential of polycarbonate vectors for future in vivo application as an anticancer therapy.


Assuntos
Carbonatos/química , Polímeros/química , RNA Interferente Pequeno/genética , Transfecção , Carbonatos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Polímeros/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
4.
Adv Healthc Mater ; 13(8): e2302712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994483

RESUMO

Lipid-based nanocarriers have demonstrated high interest in delivering genetic material, exemplified by the success of Onpattro and COVID-19 vaccines. While PEGylation imparts stealth properties, it hampers cellular uptake and endosomal escape, and may trigger adverse reactions like accelerated blood clearance (ABC) and hypersensitivity reactions (HSR). This work highlights the great potential of amphiphilic poly(N-methyl-N-vinylacetamide) (PNMVA) derivatives as alternatives to lipid-PEG for siRNA delivery. PNMVA compounds with different degrees of polymerization and hydrophobic segments, are synthesized. Among them, DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine)-PNMVA efficiently integrates into lipoplexes and LNP membranes and prevents protein corona formation around these lipid carriers, exhibiting stealth properties comparable to DSPE-PEG. However, unlike DSPE-PEG, DSPE-PNMVA24 shows no adverse impact on lipoplexes cell uptake and endosomal escape. In in vivo study with mice, DSPE-PNMVA24 lipoplexes demonstrate no liver accumulation, indicating good stealth properties, extended circulation time after a second dose, reduced immunological reaction, and no systemic pro-inflammatory response. Safety of DSPE-PNMVA24 is confirmed at the cellular level and in animal models of zebrafish and mice. Overall, DSPE-PNMVA is an advantageous substitute to DSPE-PEG for siRNA delivery, offering comparable stealth and toxicity properties while improving efficacy of the lipid-based carriers by minimizing the dilemma effect and reducing immunological reactions, meaning no ABC or HSR effects.


Assuntos
Lipossomos , Polietilenoglicóis , Polivinil , Camundongos , Humanos , Animais , Lipossomos/química , Polietilenoglicóis/química , Vacinas contra COVID-19 , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , RNA Interferente Pequeno/genética , Fosfatidiletanolaminas/química
5.
Int J Pharm ; 651: 123769, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181994

RESUMO

Liposomes are very interesting drug delivery systems for pharmaceutical and therapeutic purposes. However, liposome sterilization as well as their industrial manufacturing remain challenging. Supercritical carbon dioxide is an innovative technology that can potentially overcome these limitations. The aim of this study was to optimize a one-step process for producing and sterilizing liposomes using supercritical CO2. For this purpose, a design of experiment was conducted. The analysis of the experimental design showed that the temperature is the most influential parameter to achieve the sterility assurance level (SAL) required for liposomes (≤10-6). Optimal conditions (80 °C, 240 bar, 30 min) were identified to obtain the fixed critical quality attributes of liposomes. The conditions for preparing and sterilizing empty liposomes of various compositions, as well as liposomes containing the poorly water-soluble drug budesonide, were validated. The results indicate that the liposomes have appropriate physicochemical characteristics for drug delivery, with a size of 200 nm or less and a PdI of 0.35 or less. Additionally, all liposome formulations demonstrated the required SAL and sterility at concentrations of 5 and 45 mM, with high encapsulation efficiency.


Assuntos
Infertilidade , Lipossomos , Humanos , Lipossomos/química , Dióxido de Carbono/química , Sistemas de Liberação de Medicamentos , Esterilização
6.
J Control Release ; 361: 87-101, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482343

RESUMO

The recent approval of Onpattro® and COVID-19 vaccines has highlighted the value of lipid nanoparticles (LNPs) for the delivery of genetic material. If it is known that PEGylation is crucial to confer stealth properties to LNPs, it is also known that PEGylation is responsible for the decrease of the cellular uptake and endosomal escape and for the production of anti-PEG antibodies inducing accelerated blood clearance (ABC) and hypersensitivity reactions. Today, the development of PEG alternatives is crucial. Poly(N-vinyl pyrrolidone) (PNVP) has shown promising results for liposome decoration but has never been tested for the delivery of nucleic acids. Our aim is to develop a series of amphiphilic PNVP compounds to replace lipids-PEG for the post-insertion of lipoplexes dedicated to siRNA delivery. PNVP compounds with different degrees of polymerization and hydrophobic segments, such as octadecyl, dioctadecyl and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were generated. Based on the physicochemical properties and the efficiency to reduce protein corona formation, we showed that the DSPE segment is essential for the integration into the lipoplexes. Lipoplexes post-grafted with 15% DSPE-PNVP30 resulted in gene silencing efficiency close to that of lipoplexes grafted with 15% DSPE-PEG. Finally, an in vivo study in mice confirmed the stealth properties of DSPE-PNVP30 lipoplexes as well as a lower immune response ABC effect compared to DSPE-PEG lipoplexes. Furthermore, we showed a lower immune response after the second injection with DSPE-PNVP30 lipoplexes compared to DSPE-PEG lipoplexes. All these observations suggest that DSPE-PNVP30 appears to be a promising alternative to PEG, with no toxicity, good stealth properties and lower immunological response.


Assuntos
COVID-19 , Polietilenoglicóis , Camundongos , Humanos , Animais , Polietilenoglicóis/química , Vacinas contra COVID-19 , Lipossomos/química , RNA Interferente Pequeno , Inativação Gênica
7.
Int J Pharm ; 641: 123088, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257795

RESUMO

Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.


Assuntos
Ácido Elágico , Polímeros , Polímeros/química , Química Farmacêutica/métodos , Ácidos Polimetacrílicos/química , Solubilidade , Composição de Medicamentos/métodos , Temperatura Alta , Portadores de Fármacos/química
8.
Eur J Pharm Biopharm ; 183: 112-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638849

RESUMO

The effects of four potential supercritical carbon dioxide (ScCO2) sterilization conditions on the chemical stability of 9 phospholipids and on the physicochemical characteristics of liposomes consisting of stable phospholipids, as well as their sterilization efficiency were evaluated. These conditions were : C1 (ScCO2/70 °C/150 bar/240 min), C2 (ScCO2/0.25 % water/ 0.15% H2O2/ 0.5% acetic anhydride/38° C/85 bar/45 min), C3 (ScCO2/0.08 % peracetic acid/35° C/104 bar/180 min) and C4 (ScCO2/200 ppm H2O2/40 °C/270 bar/90 min). The results showed for phospholipids, a significant increase in hydrolysis products of 3.77 to 14.50 % and an increase in oxidation index of 6.10 to 430.50 % with unsaturated phospholipids for all tested conditions while with saturated phospholipids, no significant degradation was observed. Concerning the liposome formulation, no change in dispersion color and no phospholipid degradation were observed. However, a decrease in liposome size from 126.90 nm to 111.80 nm, 96.27 nm, 99.60 nm and 109.13 nm and an increase in the PdI from 0.208 to 0.271, 0.233, 0.285, and 0.298 were found with conditions C1, C2, C3 and C4 respectively. For the sterilization efficiency, conditions C1, C2 and C3 achieved the required sterility assurance level (SAL) of 10-6 for liposomes.


Assuntos
Lipossomos , Fosfolipídeos , Dióxido de Carbono/farmacologia , Peróxido de Hidrogênio , Esterilização/métodos
9.
Int J Pharm ; 625: 122111, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973590

RESUMO

Silicones, more specifically those of the polydimethylsiloxane type, have been widely used in the pharmaceutical industry for decades, particularly in topical applications. In the dermatological field, in addition to provide undeniable textural and sensory benefits, they can play important functions in the physicochemical properties, stability and biopharmaceutical behavior of these formulations. However, despite the notable advances that can be attributed to the family of silicones, the reputation of these compounds is quite bad. Indeed, silicones, even if they derive from sand, are synthetic compounds. Moreover, they are not biodegradable. They flow into our wastewater and oceans, accumulating in the fauna and flora. This obviously raises many concerns in the common imagination. Do silicones represent a danger for our environment? Should the human species worry about long term toxic effects? Are the claimed benefits really that important? After exploring the various applications of silicone excipients in topical dermatological formulations with a special focus on recent advances which open breathtaking prospects for dermatological applications, this paper shed light on the specific challenges involved in preparation of silicone-based drug as well as, the in vivo behavior of these polymers, the toxicological and environmental risks associated with their application.


Assuntos
Química Farmacêutica , Silicones , Portadores de Fármacos/química , Composição de Medicamentos , Excipientes/química , Humanos , Silicones/química
10.
Int J Pharm ; 627: 122212, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150416

RESUMO

Budesonide and salbutamol-loaded liposomes were prepared using an innovative one step supercritical CO2 method without any use of organic solvents. Liposomes composed of soybean phosphatidylcholine, cholesterol and PEGylated lipid (65/30/5% (m/m)) were produced with a size less than 200 nm, a PdI within the range of 0.3 and 0.35 and encapsulation efficiency for budesonide and salbutamol reaching to 94% and 40% respectively. The physical stability of the formulation was improved by optimizing a dry form by freeze-drying with trehalose in a 20:1 (trehalose:lipid) ratio and an increase in the percentage of PEGylated lipid from 5% to 15%. This dry form stored at 4 °C maintains 90-110% of the initial concentration of active compounds. The concentration of budesonide and salbutamol after 15 weeks was 522.92 ± 73.01 µg/mL and 144.86 ± 31.22 µg/mL respectively. These concentrations are close to the concentrations of these molecules in the pharmaceutical products Pulmicort® (500 µg/mL of budesonide) and Ventolin® (100 µg/dose). The formulation tested on lung cells, allows a cell viability of 71 ± 6%, which is not significantly different from untreated cells.


Assuntos
Dióxido de Carbono , Lipossomos , Lipossomos/química , Dióxido de Carbono/química , Trealose , Budesonida , Albuterol , Fosfatidilcolinas , Colesterol , Solventes , Polietilenoglicóis , Tamanho da Partícula
11.
Int J Pharm ; 626: 122157, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055443

RESUMO

Many active principles belong to the second class of the Biopharmaceutics Classification System due to their low aqueous solubility. Elaboration of new solid oral forms by hot-melt extrusion and fused deposition modeling appears as a promising tool to increase the dissolution rate of these drugs. Indeed, hot-melt extrusion allows the amorphisation of drugs and forms with complex geometries are built by 3D printing. Therefore, the goal of this work is to enhance the dissolution rate of poorly soluble drugs using hot-melt extrusion coupled with fused deposition modeling. Four formulations containing Affinisol® 15LV, Kollidon® VA64 and a challenging amount of itraconazole (25 % (wt.)) were successfully printed into forms of 20, 50 and 80 % infill densities. Differential scanning calorimetry analysis has shown that itraconazole remained amorphous during 52 weeks. The drug release rate was highly improved compared to itraconazole in a crystalline form. The dissolution rate was influenced by the infill density and the polymer composition of printed forms which could modify respectively the surface to volume ratio and the distribution of the components in the printed forms. One formulation printed with 20 % infill density even had a solubility profile similar to that of Sporanox®, the commercialized drug product in Belgium.


Assuntos
Itraconazol , Povidona , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Itraconazol/química , Polímeros/química , Povidona/química , Impressão Tridimensional , Solubilidade
12.
Int J Pharm ; 592: 120093, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33212171

RESUMO

Liposomes were produced by an innovative method using supercritical carbon dioxide as a dispersing agent. A quality by design strategy was used to find optimal production conditions with specific parameters (lipid concentration, dispersion volume, agitation rate, temperature and pressure) allowing the production of liposomes with predicted physicochemical characteristics (particles size and PdI). Two conditions were determined with specific production parameters. It was shown that these two conditions allowed the production of liposomes of different compositions and that most of the liposome formulations had size and dispersity in accordance with the prediction values. The condition involving the higher lipid concentration showed a higher variability in terms of size and dispersity. However, this variability remained acceptable. This innovative supercritical method allowed the production of liposomes with physicochemical characteristics similar to those obtained by the conventional thin film hydration method. This new supercritical carbon dioxide method easily scalable in GMP conditions is a one-step production method contrarily to conventional methods which generally need an additional step as extrusion to homogenize the size of liposomes.


Assuntos
Dióxido de Carbono , Lipossomos , Composição de Medicamentos , Tamanho da Partícula , Tecnologia
13.
Int J Pharm ; 605: 120851, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217823

RESUMO

Over the past two decades, RNA interference has become an extensively studied mechanism to silence gene and treat diseases including cancer. siRNA appears as a promising strategy that could avoid some side effects related to traditional chemotherapy. Considering the weak stability of naked siRNA in blood, vectors like cationic liposomes or Lipid Nanoparticles (LNPs) are widely used to carry and protect siRNA until it reaches the tumor targeted. Despite extensive research, only three RNAi drugs are currently approved by the Food and Drug Administration, including only one LNP formulation of siRNA to treat hereditary ATTR amyloidosis. This shows the difficulty of lipoplexes clinical translation, in particular in cancer therapy. To overcome the lipoplexes limitations, searches are made on innovative lipoplexes formulations with enhanced siRNA efficacy. The present review is focusing on the recent use of pH-sensitive lipids, peptides and cell-penetrating peptides or polymers. The incorporation of some of these components in the lipoplex formulation induces a fusogenic property or an enhanced endosomal escape, an enhanced cellular uptake, an enhanced tumor targeting, an improved stability in the blood stream …These innovations appear critical to obtain an efficient siRNA accumulation in tumor cells with effective antitumor effect considering the complex tumor environment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipídeos , Lipossomos , Neoplasias/tratamento farmacológico , Interferência de RNA , RNA Interferente Pequeno
14.
Int J Pharm ; 597: 120271, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548365

RESUMO

Liposomes are targeted drug delivery systems that are of great pharmaceutical and therapeutic interest. Parenteral route is the main way used for liposome administration. In this case, their sterility is a requirement. However, due to the particular sensitivity of liposomes and their tendency to physicochemical alterations, their sterilization remains a real challenge. Conventional sterilization methods such as heat, ethylene oxide, ultraviolet and gamma irradiations are considered as unsuitable for liposome sterilization and the recommended methods for obtaining sterility of liposomes are filtration and aseptic manufacturing. Unfortunately, these recommended methods are not without limitations. This review outlines the difficulties associated with the use of these different classical methods for obtaining liposome sterility. The effects on liposome physicochemical and biopharmaceutical characteristics as well as efficacy, toxicity and practical problems of these sterilization techniques have been discussed. The search for an alternative method being therefore necessary, the applicability of supercritical carbon dioxide (ScCO2) technology, which is nowadays a promising strategy for the sterilization of sensitive products such as liposomes, is also examined. It appears from this analysis that ScCO2 could effectively be an interesting alternative to achieve sterility of liposomes, but for this, sterilization assays including challenge tests and optimization studies are needed.


Assuntos
Lipossomos , Esterilização , Sistemas de Liberação de Medicamentos , Filtração
15.
Int J Pharm ; 596: 120214, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493602

RESUMO

Essential oils have known a renewed interest, particularly for their antimicrobial properties. In the field of skin delivery of essential oils, fluid oil-in-water (O/W) emulsions have been studied for several years in order to improve their stability. When dealing with infections of the upper skin layers, these vehicles, in spite of their low viscosity, must have a good skin persistence and also concentrate the essential oil components in the target skin layers. Given the well-known ability of alkylsiloxysilicate resins to induce a very substantive and non-occlusive film after cutaneous application in an appropriate preparation, it has been undertaken to use them to prepare a highly persistent O/W fluid emulsion of essential oil. Hence, after the successful development of a fluid silicone-in-water (Si/W) emulsion integrating a 100% trimethylsiloxysilicate resin, the essential oil was incorporated in this emulsion. The physical and chemical stabilities of the prepared emulsion were then studied in the final packaging under different storage conditions. In addition, the skin penetration profile of essential oil from this vehicle was investigated, ex vivo, on pig ear skin, using Franz diffusion cells and analytical techniques such as confocal Raman microscopy. As the developed vehicle was found to meet our delivery expectations, its skin tolerance has been proven by an in vivo chromametric evaluation of its irritant potential. The skin persistence of this emulsion containing an antimicrobial essential oil was then studied. Considering its properties, the developed emulsion is expected to represent a real asset in the treatment of skin infections, particularly infections of upper layers of human skin such as dermatophytosis.


Assuntos
Óleos Voláteis , Óleos , Animais , Emulsões , Silicones , Suínos , Viscosidade , Água
16.
AAPS PharmSciTech ; 11(2): 966-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20512433

RESUMO

To investigate the encapsulation of Print 3G, a peptidic agent that could reduce the angiogenic development of breast tumors, pegylated liposomes used as intravenous vectors were studied and characterized. Recently, the path of liposomes has been explored with success to improve the pharmacological properties of peptidic drugs and to stabilize them. In this study, loaded unilamellar vesicles composed of SPC:CHOL:mPEG2000-DSPE (47:47:6) were prepared by the hydration of lipid film technique. An HPLC method was developed and validated for the determination of Print 3G to calculate its encapsulation efficiency. Observed Print 3G adsorption on different materials employed during liposome preparation (such as glass beads, tubing, and connections for extrusion) led to the modification of the manufacturing method. The freeze-thawing technique was used to enhance the amount of Print 3G encapsulated into blank liposomes prepared using the hydration of lipid film procedure. Many factors may influence peptide entrapment, namely the number of freeze-thawing cycles, the lipid concentration, the peptide concentration, and the mixing time. Consequently, a design of experiments was performed to obtain the best encapsulation efficiency while minimizing the number of experiments. The lipid concentration and the number of freeze-thawing cycles were identified as the positive factors influencing the encapsulation. As a result of the optimization, an optimum was found and encapsulation efficiencies were improved from around 30% to 63%. Liposome integrity was evaluated by photon correlation spectroscopy and freeze-fracture electron microscopy to ensure that the selected formulation possesses the required properties to be a potential candidate for further in vitro and in vivo experiments.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Lipossomos/química , Peptídeos/química
17.
Int J Pharm ; 589: 119812, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882367

RESUMO

Poor aqueous solubility of terpenophenolic compound Cannabidiol (CBD) is a major issue in the widespread use of this promising therapeutic polyphenol. Moreover, choosing the appropriate strategy to overcome this challenge is time-consuming and based on trial-error processes. The amorphous form of CBD provided higher aqueous solubility as well as faster dissolution rate in comparison with crystalline CBD. Nevertheless, amorphous forms of CBD tend to recrystallize. The aim of this study was to use three different strategies based on the stabilization of the amorphous form. Cyclodextrins (CH3αCD, HPßCD and HPγCD.), mesoporous silicas (Silsol® and Syloid® AL-1FP) and water soluble polymers (Kollidon® VA64, Kollidon® 12PF and Soluplus®) were processed by using the following techniques: freeze-drying, spray-drying, subcritical carbon dioxide impregnation or hot-melt extrusion. All the obtained formulations provided complete amorphous CBD, although the drug loading depend highly of the excipients. CBD-cyclodextrin formulations, processed by freeze-drying or spray-drying, and CBD-mesoporous silica formulations, processed by subcritical CO2 or by atmospheric impregnation, provided significant increase of aqueous solubility. While the use of Kollidon® 12PF did not provided significant increased solubility within 90 min, Kollidon® VA64 has been highlighted as the excipient that exhibits the highest increase of aqueous solubility of this study. Finally, all formulations, excepted CBD-ALFP formulations, showed adequate stability within at least two months.


Assuntos
Canabidiol , Polímeros , Composição de Medicamentos , Solubilidade , Água
18.
Int J Pharm ; 573: 118861, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31765774

RESUMO

The encapsulation into liposomes of several types of molecules presents the advantages to protect the activity of these molecules and to target specific tissues. Nevertheless, a major obstacle remains the incomplete understanding of nano-bio interactions. Specifically, the impact that inclusion of drug into liposomes or of drug-in-cyclodextrin-in liposomes (DCL) could have on the molecular and cellular mechanism of drug action is largely unknown. As a proof of concept, we evaluated the impact of 17ß-estradiol (E2) included into liposomes or DCL on estrogen receptor (ER)α signaling pathways. Indeed, ERα relays the pleiotropic actions of E2 in physiology and pathophysiology through two major pathways: (1) the genomic/nuclear effects associated to the transcriptional activity of the ERα and (2) the rapid/nongenomic/membrane-initiated steroid signaling (MISS) effects related to the induction of fast signaling pathways occurring when ERα is anchored to the plasma membrane. We evidenced that the inclusion of E2 into liposomes (Lipo-E2) or into DCL (DCL-E2) prevented the activation of the rapid/nongenomic/extranuclear/MISS pathway of ERα, while the activation of the genomic/nuclear pathway was maintained. These results support that Lipo-E2 and DCL-E2 could be a useful tool to delineate the complex molecular mechanisms associated to ERα. In conclusion, this study supports the notion that inclusion of drugs into liposomes or DCL could modify some specific pathways of their molecular and cellular mechanisms of action. These results emphasized that attention should be paid to nano-bio interactions induced by the use of nanovectors in medicine.


Assuntos
Membrana Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Animais , Disponibilidade Biológica , Membrana Celular/metabolismo , Ciclodextrinas/química , Modelos Animais de Doenças , Estradiol/química , Estradiol/farmacocinética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/farmacocinética , Feminino , Terapia de Reposição Hormonal/métodos , Fogachos/tratamento farmacológico , Fogachos/etiologia , Humanos , Lipossomos , Células MCF-7 , Menopausa/efeitos dos fármacos , Menopausa/fisiologia , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Ovariectomia/efeitos adversos , Tamanho da Partícula , Estudo de Prova de Conceito , Transdução de Sinais/fisiologia , Solubilidade
19.
Eur J Pharm Biopharm ; 137: 95-111, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30794856

RESUMO

Nucleic acids carried by non-viral nanovectors have demonstrated high potential as a therapeutic strategy for gene-related diseases. The dermal or transdermal gene delivery allow to target local skin diseases or to reach the blood stream. However, the skin is the first defense barrier of the body and must be overcome to distribute nucleic acids. Many intracellular barriers as cellular uptake, endosomal escape or cytosolic gene trafficking have to be crossed for the gene to achieve its therapeutic action. All hurdles to skin nucleic acid therapy are precisely described. Physical, active or passive methods have been proposed to improve the penetration through the stratum corneum. Lipidic-nanocarriers represent one of the most attractive methods because any skin disruption technique is requested. We give an overview of deformable lipidic-nanocarriers that have been developed to promote the skin penetration of nucleic acids. Moreover, this review describes the potential of deformable liposomes for cutaneous disorders.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos/administração & dosagem , Dermatopatias/terapia , Animais , Terapia Genética/métodos , Humanos , Lipídeos/química , Lipossomos , Ácidos Nucleicos/metabolismo , Pele/metabolismo , Absorção Cutânea
20.
Eur J Pharm Sci ; 99: 1-8, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27951411

RESUMO

Solid dispersion formulations made of itraconazole (ITZ) and Soluplus® (polyethylene glycol, polyvinyl acetate and polyvinylcaprolactame-based graft copolymer abbreviated SOL) were produced using hot melt extrusion. Since ITZ possesses a water solubility of less than 1ng/mL, the aim of this work was to enhance the aqueous solubility of ITZ, and thereby improve its bioavailability. The three formulations consisted of a simple SOL/ITZ amorphous solid dispersion (ASD), an optimized SOL/ITZ/AcDiSol® (super-disintegrant) ASD and an equimolar inclusion complex of ITZ in hydroxypropyl-ß-cyclodextrin (substitution degree=0.63, CD) with SOL. The three formulations were compared in vitro and in vivo to the marketed product Sporanox®. The in vitro enhancement of dissolution rate was evaluated using a biphasic dissolution test. In vitro dissolution results showed that all three formulations had a higher percentage of ITZ released than Sporanox® with the following ranking: SOL/ITZ/CD>SOL/ITZ/AcDiSol®>SOL/ITZ>Sporanox®. The bioavailability of these four formulations was evaluated in rats. The bioanalytical method was optimized so that only 10µL of blood was withdrawn from the rats using specific volumetric absorptive microsampling devices. This enabled to keep the same rats during the whole study, which was in accordance with the Three Rs rules (reduction, refinement and replacement). Furthermore, this technique allowed the suppression of inter-individual variability. Higher Cmax and AUC were obtained after the administration of all three formulations compared to the levels after the use of Sporanox® as follows: SOL/ITZ/AcDiSol®>SOL/ITZ/CD>SOL/ITZ>Sporanox®. The inversion in the ranking between SOL/ITZ/CD and SOL/ITZ/AcDiSol® made impossible the establishment of an in vitro-vivo correlation. Indeed, very different release rates were obtained in vitro and in vivo for the two optimized formulations. These results suggest that ITZ would be protected inside the core of the SOL micelles even during the absorption step at the intestine, while some agents present in the intestinal fluids could displace ITZ from the hydrophobic cavity of CD by competition.


Assuntos
Itraconazol/química , Itraconazol/farmacocinética , Tecnologia Farmacêutica/métodos , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Excipientes/química , Absorção Intestinal/efeitos dos fármacos , Masculino , Micelas , Polietilenoglicóis/química , Polímeros/química , Polivinil/química , Ratos , Ratos Wistar , Solubilidade , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA