Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Langmuir ; 39(50): 18424-18436, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051205

RESUMO

Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.


Assuntos
Micelas , Fosfatidilcolinas , Fosfatidilcolinas/química , Ácidos Graxos Monoinsaturados , Microscopia Eletrônica de Transmissão , Lipossomos/química
2.
Eur Phys J E Soft Matter ; 46(12): 128, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099960

RESUMO

Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). To determine whether PTX solubility is governed by lipid membrane structure or by local intermolecular interactions, we used synchrotron small-angle X-ray scattering. To increase the signal/noise ratio, we used DNA to condense the lipid formulations into lipoplex pellets. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of liposomal carriers for PTX delivery.


Assuntos
Antineoplásicos , Neoplasias , Paclitaxel , Lipossomos , Solubilidade , Micelas
3.
Langmuir ; 35(36): 11891-11901, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31408350

RESUMO

We report on the discovery of a new organized lipid-nucleic acid phase upon intercalation of blunt duplexes of short DNA (sDNA) within cationic multilayer fluid membranes. End-to-end interactions between sDNA leads to columnar stacks. At high membrane charge density, with the inter-sDNA column spacing (dsDNA) comparable but larger than the diameter of sDNA, a 2D columnar phase (i.e., a 2D smectic) is found similar to the phase in cationic liposome-DNA complexes with long lambda-phage DNA. Remarkably, with increasing dsDNA as the membrane charge density is lowered, a transition is observed to a 3D columnar phase of stacked sDNA. This occurs even though direct DNA-DNA electrostatic interactions across layers are screened by diffusing cationic lipids near the phosphate groups of sDNA. Softening of the membrane bending rigidity (κ), which further promotes membrane undulations, significantly enhances the 3D columnar phase. These observations are consistent with a model by Schiessel and Aranda-Espinoza where local membrane undulations, due to electrostatically induced membrane wrapping around sDNA columns, phase lock from layer-to-layer, thereby precipitating coherent "crystal-like" undulations coupled to sDNA columns with long-range position and orientation order. The finding that this new phase is stable at large dsDNA and enhanced with decreasing κ is further supportive of the model where the elastic cost of membrane deformation per unit area around sDNA columns (∝ κh2/dsDNA4, h2 = sum of square of amplitudes of the inner and outer monolayer undulations) is strongly reduced relative to the favorable electrostatic attractions of partially wrapped membrane around sDNA columns. The findings have broad implications in the design of membrane-mediated assembly of functional nanoparticles in 3D.


Assuntos
DNA/química , Ácidos Graxos Monoinsaturados/química , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Lipossomos/química , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 35(48): 15970-15978, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539262

RESUMO

In this minireview, which is part of a special issue in honor of Jacob N. Israelachvili's remarkable research career on intermolecular forces and interfacial science, we present studies of structures, phase behavior, and forces in reaction mixtures of microtubules (MTs) and tubulin oligomers with either intrinsically disordered protein (IDP) Tau, cationic vesicles, or the polyamine spermine (4+). Bare MTs consist of 13 protofilaments (PFs), on average, where each PF is made of a linear stack of αß-tubulin dimers (i.e., tubulin oligomers). We begin with a series of experiments which demonstrate the flexibility of PFs toward shape changes in response to local environmental cues. First, studies show that MT-associated protein (MAP) Tau controls the diameter of microtubules upon binding to the outer surface, implying a shape change in the cross-sectional area of PFs forming the MT perimeter. The diameter of a MT may also be controlled by the charge density of a lipid bilayer membrane that coats the outer surface. We further describe an experimental study where it is unexpectedly found that the biologically relevant polyamine spermine (+4e) is able to depolymerize taxol-stabilized microtubules with efficiency that increases with decreasing temperature. This MT destabilization drives a dynamical structural transition where inside-out curving of PFs, during the depolymerization peeling process, is followed by reassembly of ring-like curved PF building blocks into an array of helical inverted tubulin tubules. We finally turn to a very recent study on pressure-distance measurements in bundles of MTs employing the small-angle X-ray scattering (SAXS)-osmotic pressure technique, which complements the surface-forces-apparatus technique developed by Jacob N. Israelachvili. These latter studies are among the very few which are beginning to shed light on the precise nature of the interactions between MTs mediated by MAP Tau in 37 °C reaction mixtures containing GTP and lacking taxol.


Assuntos
Biopolímeros/química , Proteínas Intrinsicamente Desordenadas/química , Microtúbulos/química , Tubulina (Proteína)/química , Proteínas tau/química , Cátions , Paclitaxel/química , Conformação Proteica
5.
Biochim Biophys Acta ; 1848(6): 1308-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25753113

RESUMO

Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes.


Assuntos
Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Lipídeos/química , Proteínas Mutantes/metabolismo , Nanopartículas/química , Ácidos Nucleicos/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Cátions , Linhagem Celular , Lipossomos , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Tamanho da Partícula , Polietilenoglicóis/química , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
6.
Bioorg Med Chem Lett ; 26(6): 1618-1623, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874401

RESUMO

Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.


Assuntos
DNA/química , Lipídeos/química , Lipossomos/química , Peptídeos Cíclicos/síntese química , Polietilenoglicóis/química , Cátions/química , Humanos , Lipossomos/síntese química , Estrutura Molecular , Nanopartículas/química , Peptídeos Cíclicos/química
7.
Langmuir ; 31(25): 7073-83, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26048043

RESUMO

The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electron microscopy (cryo-EM), optical light scattering, and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene glycol)) cationic liposome-DNA nanoparticles (CL-DNA NPs) as a function of DNA length, topology (linear and circular), and ρ(chg) (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied exhibited lamellar internal nanostructure, NPs formed with short (∼2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρ(chg) > 1, in the excess cationic lipid regime, threadlike micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes, and spherical micelles. At high concentrations these PEGylated threadlike micelles formed a well-ordered, patterned morphology with highly uniform intermicellar spacing. At ρ(chg) < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight into what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered threadlike micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multifunctional nanoparticle networks.


Assuntos
DNA/química , Lipossomos/química , Micelas , Nanopartículas/química , Polietilenoglicóis/química
8.
J Gene Med ; 16(3-4): 84-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24753287

RESUMO

BACKGROUND: Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential application in gene therapy. A key challenge in creating CL-DNA complexes for application is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of a high serum content on TE, even though this may provide design guidelines for application in vivo. METHODS: We prepared CL-DNA complexes in which we varied the neutral lipid [1,2-dioleoyl-sn-glycerophosphatidylcholine, glycerol-monooleate (GMO), cholesterol], the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). RESULTS: In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, particularly at a high serum content. CONCLUSIONS: Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We propose guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid.


Assuntos
Cátions/química , Técnicas de Transferência de Genes , Terapia Genética/métodos , Lipídeos/química , Benzamidas/química , Linhagem Celular Tumoral , DNA/genética , Escherichia coli/genética , Ácidos Graxos Monoinsaturados/química , Humanos , Lipossomos/química , Plasmídeos/genética , Compostos de Amônio Quaternário/química , Soro/química , Espermina/análogos & derivados , Espermina/química , Transfecção
10.
Langmuir ; 28(28): 10495-503, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22616637

RESUMO

Environmentally responsive materials (i.e., materials that respond to changes in their environment with a change in their properties or structure) are attracting increasing amounts of interest. We recently designed and synthesized a series of cleavable multivalent lipids (CMVLn, with n = 2-5 being the number of positive headgroup charges at full protonation) with a disulfide bond in the linker between their cationic headgroup and hydrophobic tails. The self-assembled complexes of the CMVLs and DNA are a prototypical environmentally responsive material, undergoing extensive structural rearrangement when exposed to reducing agents. We investigated the structural evolution of CMVL-DNA complexes at varied complex composition, temperature, and incubation time using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A related lipid with a stable linker, TMVL4, was used as a control. In a nonreducing environment, CMVL-DNA complexes form the lamellar (L(α)(C)) phase, with DNA rods sandwiched between lipid bilayers. However, new self-assembled phases form when the disulfide linker is cleaved by dithiothreitol or the biologically relevant reducing agent glutathione. The released DNA and cleaved CMVL headgroups form a loosely organized phase, giving rise to a characteristic broad SAXS correlation profile. CMVLs with high headgroup charge also form condensed DNA bundles. Intriguingly, the cleaved hydrophobic tails of the CMVLs reassemble into tilted chain-ordered L(ß') phases upon incubation at physiological temperature (37 °C), as indicated by characteristic WAXS peaks. X-ray scattering further reveals that two of the three phases (L(ßF), L(ßL), and L(ßI)) constituting the L(ß') phase coexist in these samples. The described system may have applications in lipid-based nanotechnologies.


Assuntos
DNA/química , Lipídeos/química , Lipossomos/química , Animais , Cátions/química , Bovinos , Lipídeos/síntese química , Modelos Moleculares , Estrutura Molecular
11.
ACS Appl Mater Interfaces ; 14(51): 56613-56622, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521233

RESUMO

Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Camundongos , Humanos , Animais , Feminino , Paclitaxel/química , Lipossomos/química , Distribuição Tecidual , Caspase 3 , Polietilenoglicóis/química , Lipídeos , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/química
12.
J Am Chem Soc ; 133(19): 7585-95, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21520947

RESUMO

We report the formation of liquid crystalline (LC) phases of short double-stranded DNA with nonpairing (nonsticky) overhangs, confined between two-dimensional (2D) lipid bilayers of cationic liposome-DNA complexes. In a landmark study (Science2007, 318, 1276), Nakata et al. reported on the discovery of strong end-to-end stacking interactions between short DNAs (sDNAs) with blunt ends, leading to the formation of 3D nematic (N) and columnar LC phases. Employing synchrotron small-angle X-ray scattering, we have studied the interplay between shape anisotropy-induced and DNA end-to-end interaction-induced N ordering for 11, 24, and 48 bp sDNA rods with single-stranded oligo-thymine (T) overhangs modulating the end-to-end interactions. For suppressed stacking interactions with 10-T overhangs, the volume fraction of sDNA at which the 2D isotropic (I)-to-N transition occurs for 24 and 48 bp sDNA rods depended on their length-to-width (L/D) shape anisotropy, qualitatively consistent with Onsager's theory for the entropic alignment of rigid rods. As the overhang length is reduced from 10 to 5 and 2 T for 24 and 48 bp sDNA, the N-to-I transition occurs at lower volume fractions, indicating the onset of some degree of end-to-end stacking interactions. The 11 bp sDNA rods with 5- and 10-T overhangs remain in the I phase, consistent with their small shape anisotropy (L/D ≈ 1.9) below the limit for Onsager LC ordering. Unexpectedly, in contrast to the behavior of 24 and 48 bp sDNA, the end-to-end interactions between 11 bp sDNA rods with 2-T overhangs set in dramatically, and a novel 2D columnar N phase (N(C)) with finite-length columns formed. The building blocks of this phase are comprised of 1D stacks of (on average) four 11 bp DNA-2T rods with an effective L(stacked)/D ≈ 8.2. Our findings have implications for the DNA-directed assembly of nanoparticles on 2D platforms via end-to-end interactions and in designing optimally packed LC phases of short anisotropic biomolecules (such as peptides and short-interfering RNAs) on nanoparticle membranes, which are used in gene silencing and chemical delivery.


Assuntos
DNA/química , Lipossomos/química , Cristais Líquidos/química , Modelos Biológicos , Cátions
13.
Sci Rep ; 11(1): 7311, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790325

RESUMO

Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.


Assuntos
Antineoplásicos/administração & dosagem , Ácidos Linoleicos/química , Lipossomos/química , Ácido Oleico/química , Paclitaxel/administração & dosagem , Antineoplásicos/toxicidade , Ácidos Graxos Monoinsaturados/química , Humanos , Células PC-3 , Paclitaxel/toxicidade , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química
14.
Biochim Biophys Acta ; 1788(9): 1869-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19559003

RESUMO

Recently, we have reported the discovery of block liposomes (BLs), a new class of liquid (chain-melted) vesicles, formed in mixtures of the curvature-stabilizing hexadecavalent cationic lipid MVLBG2, the neutral lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), and water with no added salt. BLs consist of connected spheres, pears, tubes, or rods. Unlike in typical liposome systems, where spherical vesicles, tubular vesicles, and cylindrical micelles are separated on the macroscopic scale, shapes remain connected and are separated only on the nanometer scale within a single BL. Here, we report structural studies of the effect of salt and pH on the BL phase, carried out using differential interference contrast microscopy (DIC) and cryogenic transmission electron microscopy (cryo-TEM). Addition of salt screens the electrostatic interactions; in low-salt conditions, partial screening of electrostatic interactions leads to a shape transition from BLs to bilamellar vesicles, while in the high-salt regime, a shape transition from BLs to liposomes with spherical morphologies occurs. This demonstrates that strong electrostatic interactions are essential for BL formation. Understanding the control of liposome shape evolution is of high interest because such shape changes play an important role in many intracellular processes such as endocytosis, endoplasmatic reticulum-associated vesiculation, vesicle recycling and signaling.


Assuntos
Lipossomos/química , Dendrímeros/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Fosfatidilcolinas/química , Espalhamento de Radiação , Cloreto de Sódio/farmacologia , Difração de Raios X
15.
J Am Chem Soc ; 132(47): 16841-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21028803

RESUMO

RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing pathway with wide-ranging applications in functional genomics, therapeutics, and biotechnology. Cationic liposome-small interfering RNA (CL-siRNA) complexes have emerged as vectors of choice for delivery of siRNA, which mediates RNAi. However, siRNA delivery by CL-siRNA complexes is often inefficient and accompanied by lipid toxicity. We report the development of CL-siRNA complexes with a novel cubic phase nanostructure, which exhibit efficient silencing at low toxicity. The inverse bicontinuous gyroid cubic nanostructure was unequivocally established from synchrotron X-ray scattering data, while fluorescence microscopy revealed colocalization of lipid and siRNA in complexes. We attribute the efficient silencing to enhanced fusion of complex and endosomal membranes, facilitated by the cubic phase membrane's positive Gaussian modulus, which may enable spontaneous formation of transient pores. The findings underscore the importance of understanding membrane-mediated interactions between CL-siRNA complex nanostructure and cell components in developing CL-based gene silencing vectors.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Nanoestruturas/química , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Lipossomos/toxicidade , Camundongos , Microscopia , Modelos Moleculares , Conformação Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
Top Curr Chem ; 296: 191-226, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21504103

RESUMO

Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.


Assuntos
Inativação Gênica , Lipossomos/metabolismo , Ácidos Nucleicos/genética , Plasmídeos/genética , Transfecção/métodos , Cátions/química , Cátions/metabolismo , Lipossomos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
ACS Appl Mater Interfaces ; 12(1): 151-162, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820904

RESUMO

Poly(ethylene glycol) (PEG) is a polymer used widely in drug delivery to create "stealth" nanoparticles (NPs); PEG coatings suppress NP detection and clearance by the immune system and beneficially increase NP circulation time in vivo. However, NP PEGylation typically obstructs cell attachment and uptake in vitro compared to the uncoated equivalent. Here, we report on a cationic liposome (CL) NP system loaded with the hydrophobic cancer drug paclitaxel (PTX) in which PEGylation (i.e., PEG-CLPTX NPs) unexpectedly enhances, rather than diminishes, delivery efficacy and cytotoxicity to human cancer cells. This highly unexpected enhancement occurs even when the PEG-chains coating the NP are in the transition regime between the mushroom and brush conformations. Cryogenic transmission electron microscopy (TEM) of PEG-CLPTX NPs shows that PEG causes the proliferation of a mixture of sterically stabilized nanometer-scale vesicles and anisotropic micelles (e.g., bicelles). Remarkably, the onset of bicelles at sub-monolayer concentrations of the PEG coat has to our knowledge not been previously reported; it was previously thought that PEG-lipid in this composition regime was incorporated into vesicles but did not alter their shape. Confocal microscopy and flow cytometry reveal significantly greater PTX cell uptake from stabilized PEG-CLPTX NPs (vesicles and bicelles) in contrast to bare CLPTX NPs, which can aggregate in cell medium. This underscores the ability of steric stabilization to facilitate NP entry into cells via distinct size-dependent endocytic pathways, some of which cannot transport large NP aggregates into cells. This study highlights the value of understanding how PEGylation alters NP shape and structure, and thus NP efficacy, to design next-generation stealth drug carriers that integrate active cell-targeting strategies into NPs for in vivo delivery.


Assuntos
Neoplasias , Polietilenoglicóis/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Lipossomos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia
18.
ACS Appl Mater Interfaces ; 12(1): 70-85, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31774266

RESUMO

Active targeting and precise control of drug release based on nanoparticle therapies are urgently required to precisely treat cancer. We have custom-synthesized a functional lipid (termed Fa-ONB) by introducing a folic acid-targeting group into an o-nitro-benzyl ester lipid. As designed, the liposomes formed by Fa-ONB combine active targeting and dual trigger release capabilities, which help to improve drug efficacy and reduce the toxicity of traditional liposomes. We first verified that both pH-induced hydrolysis and light treatment were able to cleave the Fa-ONB lipid. We then prepared a series of liposomes (termed FOBD liposomes) by compounding the Fa-ONB lipid with DOPC at different ratios. After encapsulation of doxorubicin (DOX), we found that the particle size of DOX-loaded FOBD liposomes (DOX/FOBD) first increased (290 to 700 nm) and then decreased again (to 400 nm) under continuous UV irradiation (120 min). The photocatalytic release efficiency under different pH conditions was investigated by dialysis experiments, and it was found that the release efficiency in an acidic environment was significantly increased relative to neutral pH. This pH-triggered release response helps distinguish pathological tissues such as lysosomal compartments and tumors. The light-induced formation of a DOX precipitate increases in efficiency with increasing UV exposure time as well as with increasing environmental acidity or alkalinity. In addition, confocal imaging and flow cytometry showed that the ability of FOBD lipids to actively target HeLa cells increased with increasing Fa-ONB lipid content. Real-time in vivo fluorescence small animal experiments proved targeting to tumors and pH- and photo-induced release properties. Furthermore, therapeutic experiments using a mouse model found a significant tumor inhibitory effect for DOX/FOBD55 liposomes with UV irradiation, clearly demonstrating the benefit of light treatment: the tumor size of the control (PBS) group was 7.59 times that of the light treatment group. Therefore, this research demonstrates the benefits of combining triggerable release functions and effective active tumor targeting in one small lipid molecule for precise cancer treatment.


Assuntos
Doxorrubicina/análogos & derivados , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Células MCF-7 , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
ACS Appl Mater Interfaces ; 12(41): 45728-45743, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32960036

RESUMO

Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.


Assuntos
Polímeros/química , DNA/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Microscopia Confocal , Nanopartículas/química , Células PC-3 , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
20.
Biomaterials ; 221: 119412, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419656

RESUMO

Monitoring of nanoparticle-based therapy in vivo and controlled drug release are urgently needed for the precise treatment of disease. We have synthesized a multifunctional Gd-DTPA-ONB (GDO) lipid by introducing the Gd-DTPA contrast agent moiety into an o-nitro-benzyl ester lipid. By design, liposomes formed from the GDO lipid combine MRI tracking ability and dual-trigger release capabilities with maximum sensitivity (because all lipids bear the cleavable moiety) without reducing the drug encapsulation rate. We first confirmed that both photo-treatment and pH-triggered hydrolysis are able to cleave the GDO lipid and lyse GDO liposomes. We then investigated the efficiency of drug release via the combined release processes for GDO liposomes loaded with doxorubicin (DOX). Relative to neutral pH, the release efficiency in acidic environment increased by 10.4% (at pH = 6.5) and 13.3% (at pH = 4.2). This pH-dependent release response is conducive to distinguishing pathological tissue such as tumors and endolysosomal compartments. The photo-induced release efficiency increases with illumination time as well as with distance of the pH from neutral. Photolysis increased the release efficiency by 13.8% at pH = 4.2, which is remarkable considering the already increased amount of drug release in the acidic environment. In addition, the relaxation time of GDO liposomes was 4.1 times that of clinical Gd-DTPA, with brighter T1-weighted imaging in vitro and in vivo. Real-time MRI imaging and in vivo fluorescence experiments demonstrated tumor targeting and MRI guided release. Furthermore, significant tumor growth inhibition in a treatment experiment using DOX-loaded GDO liposomes clearly demonstrated the benefit of photo-treatment for efficacy: the tumor size in the photo-treatment group was 3.7 times smaller than in the control group. The present study thus highlights the benefit of the design idea of combining efficient imaging/guiding, targeting, and triggerable release functions in one lipid molecule for drug delivery applications.


Assuntos
Meios de Contraste/química , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Citometria de Fluxo , Células HEK293 , Humanos , Indóis/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA