Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(6): 61, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34021848

RESUMO

OBJECTIVES: The purpose of this study was to determine the level of periodontal tissue regeneration in a canine model following post-extraction placement of an implant molded from a composite material made from extracted tooth dentin and a calcium silicate cement (CSC) material. The investigation used autologous dentin in conjunction with a CSC material to form a composite implant designed for immediate tooth replacement. METHODS: Two (2) beagles had a periodontal and radiographic examination performed to rule out any pre-treatment inflammation, significant periodontal disease, or mobility. Then, ination eleven (11) teeth were extracted and polyvinyl siloxane molds were made to fabricate three different types of implants: Particulate Implant (Test Group 1, n = 4), Shell Implant Alone (Test Group 2, n = 2), Shell Implant with Emdogain® (Test Group 3, n = 3). Teeth in the control group were extracted, scaled (n = 2), and then re-implanted into their respective fresh extraction sockets. At 4 weeks, a clinical, radiographic, and histologic assessment was performed. RESULTS: Clinical evaluation revealed no mobility in any of the test or control implants and no radiographic evidence of significant bone loss or active disease. Based on the MicroCT analysis, direct bone to implant contact was observed in some areas with an apparent periodontal ligament space. Implant-related inflammation, on average, was similar among all groups, with low numbers of infiltrates. Implant-related inflammatory reaction was generally minimal and not interpreted to be adverse. CONCLUSION: The proposed novel composite materials revealed that not only do these materials demonstrate high biocompatibility, but also their successful integration in the alveolus is likely secondary to a partial ligamentous attachment. The current investigation may lead to the use of calcium silicate-based materials as custom dental implants. Further research on this novel composite's biomechanical properties is necessary to develop the optimal material composition for use as a load-bearing dental implant.


Assuntos
Compostos de Cálcio/química , Implantes Dentários , Dentina/química , Cimento de Silicato , Silicatos/química , Alvéolo Dental/cirurgia , Animais , Fenômenos Biomecânicos , Cães , Imageamento Tridimensional , Inflamação , Masculino , Osseointegração , Ligamento Periodontal , Projetos Piloto , Extração Dentária , Alvéolo Dental/patologia , Microtomografia por Raio-X
2.
Materialia (Oxf) ; 92020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32968719

RESUMO

Optimal repair of large craniomaxillofacial (CMF) defects caused by trauma or disease requires the development of new, synthetic osteoconductive materials in combination with cell-based therapies, to overcome the limitations of traditionally used bone graft substitutes. In this study, tyrosine-derived polycarbonate, E1001(1k) scaffolds were fabricated to incorporate the osteoinductive coating, Dicalcium phosphate dihydrate (DCPD). The biocompatibility of E1001(1k)-DCPD, E1001(1k)-ßTCP and E1001(1k) scaffolds was compared using in vitro culture with human dental pulp stem cells (hDPSCs). We found that the DCPD coating was converted to carbonated hydroxyapatite over time in in vitro culture in Osteogenic Media, while the ßTCP did not. hDPSCs exhibited slow initial attachment and proliferation on DCPD E1001(1k) scaffolds, but subsequently improved over time in culture, and promoted osteogenic differentiation. To the best of our knowledge, this study highlights for the first time the effects of Osteogenic Media on phase changes of DCPD, and on DCPD scaffold cytocompatibility with hDPSCs. DCPD showed similar hDPSC biocompatibility and osteoconductivity as compared to ßTCP, and osteogenic differentiation of seeded hDPSCs. These studies suggest that E1001(1k)-DCPD scaffolds are a superior tool for craniofacial bone regeneration and provide the foundation for future in vivo testing.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32766225

RESUMO

The ability to effectively repair craniomaxillofacial (CMF) bone defects in a fully functional and aesthetically pleasing manner is essential to maintain physical and psychological health. Current challenges for CMF repair therapies include the facts that craniofacial bones exhibit highly distinct properties as compared to axial and appendicular bones, including their unique sizes, shapes and contours, and mechanical properties that enable the ability to support teeth and withstand the strong forces of mastication. The study described here examined the ability for tyrosine-derived polycarbonate, E1001(1K)/ß-TCP scaffolds seeded with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) to repair critical sized alveolar bone defects in an in vivo rabbit mandible defect model. Human dental pulp stem cells are uniquely suited for use in CMF repair in that they are derived from the neural crest, which naturally contributes to CMF development. E1001(1k)/ß-TCP scaffolds provide tunable mechanical and biodegradation properties, and are highly porous, consisting of interconnected macro- and micropores, to promote cell infiltration and attachment throughout the construct. Human dental pulp stem cells/HUVECs seeded and acellular E1001(1k)/ß-TCP constructs were implanted for one and three months, harvested and analyzed by micro-computed tomography, then demineralized, processed and sectioned for histological and immunohistochemical analyses. Our results showed that hDPSC seeded E1001(1k)/ß-TCP constructs to support the formation of osteodentin-like mineralized jawbone tissue closely resembling that of natural rabbit jaw bone. Although unseeded scaffolds supported limited alveolar bone regeneration, more robust and homogeneous bone formation was observed in hDPSC/HUVEC-seeded constructs, suggesting that hDPSCs/HUVECs contributed to enhanced bone formation. Importantly, bioengineered jaw bone recapitulated the characteristic morphology of natural rabbit jaw bone, was highly vascularized, and exhibited active remodeling by the presence of osteoblasts and osteoclasts on newly formed bone surfaces. In conclusion, these results demonstrate, for the first time, that E1001(1K)/ ß-TCP scaffolds pre-seeded with human hDPSCs and HUVECs contributed to enhanced bone formation in an in vivo rabbit mandible defect repair model as compared to acellular E1001(1K)/ß-TCP constructs. These studies demonstrate the utility of hDPSC/HUVEC-seeded E1001(1K)/ß-TCP scaffolds as a potentially superior clinically relevant therapy to repair craniomaxillofacial bone defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA