Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574915

RESUMO

In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation ß-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated ß-carotene (ßc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, ßc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of ß-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.


Assuntos
Arachis , Celulose , Emulsões , Nanopartículas , Proteínas de Plantas , beta Caroteno , beta Caroteno/química , Emulsões/química , Nanopartículas/química , Celulose/química , Arachis/química , Proteínas de Plantas/química , Reologia , Tamanho da Partícula , Oxirredução
2.
Int J Biol Macromol ; 270(Pt 1): 132312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744370

RESUMO

This study aimed to immobilize ß-galactosidase (ß-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the ß-GAL was immobilized in the different ENMs to produce the ß-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of ß-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized ß-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized ß-GAL produced in this study showed potential as an effective biocatalyst in the food industry.


Assuntos
Enzimas Imobilizadas , Grafite , Nanofibras , Oligossacarídeos , beta-Galactosidase , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Grafite/química , Oligossacarídeos/química , Galactose/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Silanos/química , Biocatálise , Poliestirenos/química , Temperatura , Catálise
3.
Int J Biol Macromol ; 242(Pt 2): 124879, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192711

RESUMO

The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.34 %) and aspect ratio. When the concentrations of LP-CNCs were >0.7 wt% or the contents of oil were no >0.5, stable Pickering emulsions were obtained. The microstructures of emulsions confirmed that LP-CNCs formed dense interfacial layers on the surface of oil droplets, which functioned as barriers to prevent aggregation and flocculation among droplets. Rheological results showed that the emulsions exhibited typical shear thinning behavior. The elastic of emulsions was dominant, and their gel strength could be enhanced by regulating the contents of emulsifiers or oil. Additionally, the Pickering emulsions stabilized by LP-CNCs showed extremely high pH, ionic strength, and temperature tolerance. This strategy provides an innovative alternative to tackle the dilemma of preparing highly stable Pickering emulsions using natural particles in food products.


Assuntos
Litchi , Nanopartículas , Celulose/química , Emulsões/química , Frutas , Emulsificantes , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA