RESUMO
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid-phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer -coated solid-phase microextraction fiber, which could be coupled directly to high-performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross-linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid-molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer-coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer-coated solid-phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole-3-pyruvic acid followed by high-performance liquid chromatography analysis. The linear range for indole acetic acid and indole-3-pyruvic acid was 1-100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.
Assuntos
Ácidos Indolacéticos/análise , Impressão Molecular , Nicotiana/química , Polímeros/química , Microextração em Fase Sólida , Cromatografia Líquida de Alta PressãoRESUMO
The development of environmental-friendly antibacterial agents with high efficiency and low cost has become the focus of attention. In this work, the Ag nanoparticles doped into chitosan (Ag NPs-CS) were synthesized by a green and facile method, and the samples were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The antibacterial tests implied that Ag NPs-CS obtained from glucose (G-Ag NPs-CS) exhibited the excellent antimicrobial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) microbes. Besides, the utilization of antibacterial agents in polymeric materials plays an significant role in healthy living. The aim is to impart the antibacterial properties and maintain/improve the mechanical properties. Therefore, the G-Ag NPs-CS with 5 wt% Ag was chosen as the optimal additive to endow polypropylene with antimicrobial activity via a simple melt blending method. The results demonstrated that the suppression of bacteria proliferation was enhanced with increasing the amount of antibacterial agent, and the microorganisms were almost killed when the content reached to 8 wt%. Meanwhile, the considerable improvement in elastic modulus and impact strength along with a slight decrease of elongation at break provided the evidence that Ag NPs-CS/PP nanocomposites were the promising candidate for practical applications.