Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 48: 102636, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549553

RESUMO

In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer N-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC50 of 20-30 µg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neoplasias/patologia , Polímeros/química , Linhagem Celular Tumoral
2.
J Mol Cell Cardiol ; 171: 56-68, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863282

RESUMO

Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.


Assuntos
Coração , Engenharia Tecidual , Materiais Biocompatíveis , Humanos , Hidrogéis , Células-Tronco , Engenharia Tecidual/métodos
3.
BMC Pulm Med ; 22(1): 389, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303179

RESUMO

BACKGROUND: Patients with obstructive sleep apnoea (OSA), male sex, obesity, older age or hypertension are prone to hypoxemia during flexible bronchoscopy. This study investigated whether using a high-flow nasal cannula (HFNC) could reduce the incidence of oxygen desaturation during bronchoscopy under deep sedation in patients at risk of hypoxemia. METHODS: A total of 176 patients at risk of hypoxemia who underwent flexible bronchoscopy under deep sedation were randomly assigned to two groups: the HFNC group (humidified oxygen was supplied via a high-flow nasal cannula at a rate of 60 L/min and a concentration of 100%, n = 87) and the facemask group (oxygen was supplied via a tight-fitting facemask at a rate of 6 L/min and a concentration of 100%, n = 89). RESULTS: Oxygen desaturation occurred in 4 (4.6%) patients in the HFNC group and 26 (29.2%) patients in the facemask group (P < 0.001). The facemask group required more jaw thrust manoeuvres than the HFNC group (43[48.3%] vs. 5[5.7%], P < 0.001). 8 patients (9.0%) in the facemask group and none in the HFNC group required bag-mask ventilation (P = 0.012). CONCLUSION: The use of an HFNC can reduce the incidence of oxygen desaturation and the requirement for airway intervention in patients at risk of hypoxemia during flexible bronchoscopy under deep sedation. TRIAL REGISTRATION: www.chiCTR.org.cn Identifier: ChiCTR2100044105. Registered 11/03/2021.


Assuntos
Cânula , Ventilação não Invasiva , Humanos , Masculino , Cânula/efeitos adversos , Ventilação não Invasiva/efeitos adversos , Máscaras/efeitos adversos , Broncoscopia/efeitos adversos , Incidência , Hipóxia/etiologia , Hipóxia/prevenção & controle , Oxigênio , Oxigenoterapia/efeitos adversos
4.
Nanomedicine ; 46: 102597, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064033

RESUMO

Polymer nanomedicines with anti-tumor activity should exhibit sufficient stability during systemic circulation to the target tissue; however, they should release the active drug selectively in the tumor. Thus, choice of a tumor-specific stimuli-sensitive spacer between the drug and the carrier is critical. Here, a series of polymer conjugates of anti-cancer drugs doxorubicin and pirarubicin covalently bound to copolymers based on N-(2-hydroxypropyl)methacrylamide via various enzymatically cleavable oligopeptide spacers were prepared and characterized. The highest rate of the drug release from the polymer carriers in presence of the lysosomal protease cathepsin B was determined for the copolymers with Val-Cit-Aba spacer. Copolymers containing pirarubicin were more cytotoxic and showed higher internalization rate than the corresponding doxorubicin counterparts. The conjugates containing GFLG and Val-Cit-Aba spacers exhibited the highest anti-tumor efficacy in vivo against murine sarcoma S-180, the highest rate of the enzymatically catalyzed drug release, and the highest cytotoxicity in vitro.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Polímeros/química , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
5.
Biol Pharm Bull ; 42(7): 1199-1206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257295

RESUMO

Metalloporphyrin derivatives have been investigated for their therapeutic potential for oxidative stress-related diseases because of their scavenging of reactive oxygen species (ROS). Here, we describe the synthesis, physicochemical properties, and ROS-scavenging activities of one such derivative-polyethylene glycol (PEG)-conjugated manganese protoporphyrin (PEG-MnPP). Carboxyl groups of the protoporphyrin ring at the C6 and C7 positions were first conjugated with ethylenediamine to introduce amino groups into the protoporphyrin structure. The amino groups were then reacted with succinimidyl PEG, with an average molecular weight of 2000, to obtain pegylated protoporphyrin (PEG-PP). Manganese was chelated to the protoporphyrin ring by incubating PEG-PP and manganese acetate in methanol. Dynamic light scattering and fluorescent spectrometry analyses revealed that PEG-MnPP self-assembled into nanoparticles in aqueous media with an apparent diameter of 70 nm. PEG-MnPP effectively eliminated hydrogen peroxide from cell culture media and protected cultured mammalian cells from toxic insults induced by hydrogen peroxide exposure or by 6-hydroxydopamine treatment. Intravenous administration of PEG-MnPP to mice significantly suppressed acute liver failure that had been induced by acetaminophen overdose. These data warrant additional investigation to study the therapeutic potential of PEG-MnPP as a water-soluble metalloporphyrin-based catalase mimic for oxidative stress-associated diseases.


Assuntos
Falência Hepática Aguda/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Protoporfirinas/administração & dosagem , Acetaminofen , Animais , Catalase , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos Endogâmicos ICR , Polietilenoglicóis/química , Protoporfirinas/química
6.
J Cell Biochem ; 119(11): 9017-9027, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256436

RESUMO

There is still lack of effective treatment of esophageal cancer, and it is urgently necessary to develop a new programs to treat this disease. More and more evidence suggests that the combination of 2 or more treatment strategies can enhance the antitumor activity in cancer treatment. We have established a new therapeutic strategy that combines doxorubicin-loaded poly(ε-caprolactone) (PCL)-Pluronic micelles and miR-34a to better combat esophageal cancer. Doxorubicin was loaded into PCL-Pluronic micelle to achieve better uptake. Confocal microscopy was used to assess in vitro cellular uptake of PCL-Pluronic micelle. Finally, the in vivo effect of this new combination therapy strategy was also studied. The results showed that PCL-Plannick micelles significantly enhanced the uptake of doxorubicin in esophageal cancer cells in vitro, thereby improving the accumulation of doxorubicin in the cells. In vitro and in vivo combination of doxorubicin-loaded PCL-Pluronic micelles and miR-34a, achieving a significantly synergistic therapeutic effect over the corresponding single treatment. These results suggested that the combinational therapy based on doxorubicin-loaded PCL-Pluronic micelle and miR-34a may provide a reasonable strategy for improving the outcome of esophageal cancer treatment.


Assuntos
Doxorrubicina/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Poliésteres/química , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Feminino , Camundongos , Camundongos Nus , Micelas
7.
Endoscopy ; 50(2): 128-136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28985630

RESUMO

BACKGROUND AND STUDY AIMS: Ideal bowel preparation for colonoscopy requires complete removal of fluid and foam from the colon. Polyethylene glycol (PEG) is widely used for bowel preparation, with antifoaming agents such as simethicone commonly used in combination with PEG. Data on the effect of simethicone on the adenoma detection rate (ADR) were limited. This study therefore aimed to investigate whether preprocedure simethicone could increase the ADR. PATIENTS AND METHODS: This was a prospective, multicenter, endoscopist-blinded randomized controlled trial involving consecutive patients who underwent colonoscopy in six centers in China. Patients were randomly assigned to one of two groups: PEG plus simethicone or PEG alone. The primary outcome was ADR; secondary outcomes were quality of bowel preparation, measured by the Boston bowel preparation scale (BBPS) and bubble scores. RESULTS: 583 patients were included. More adenomas were detected in the PEG plus simethicone group than in the PEG alone group (ADR 21.0 % vs. 14.3 %, P = 0.04; advanced ADR 9.0 % vs. 7.0 %, P = 0.38). The mean number of adenomas detected was 2.20 ±â€Š1.36 vs. 1.63 ±â€Š0.89 (P = 0.02). Patients in the PEG plus simethicone group showed better bowel cleansing efficacy: BBPS ≥ 6 in 88.3 % vs. 75.2 % (P < 0.001) and bubble scores of 1.00 ±â€Š1.26 vs. 3.98 ±â€Š2.50 (P < 0.001). Abdominal bloating was reported less frequently in the PEG plus simethicone group (7.8 % vs. 19.7 %, P < 0.001) than in the PEG alone group. CONCLUSION: Combined use of PEG and simethicone is associated with a significantly increased ADR in a Chinese population.


Assuntos
Adenoma/diagnóstico , Colo/diagnóstico por imagem , Neoplasias do Colo/diagnóstico , Colonoscopia/métodos , Simeticone/administração & dosagem , Administração Oral , Adolescente , Adulto , Idoso , Antiespumantes/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
8.
Gastrointest Endosc ; 86(1): 187-191, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27327849

RESUMO

BACKGROUND AND AIMS: Gum chewing can accelerate motility in the GI tract; clinical studies suggested gum chewing can reduce postoperative ileus. However, no trial has investigated the effect of gum chewing on bowel preparation for colonoscopy in addition to polyethylene glycol (PEG). The objective of this study was to investigate whether gum chewing before colonoscopy can increase the quality of bowel preparation. METHODS: This was a single-center, randomized controlled trial. Consecutive patients undergoing colonoscopy were randomized to the gum group or the control group. Patients in the gum group chewed sugar-free gum every 2 hours for 20 minutes each time from the end of drinking 2 L of PEG to the beginning of colonoscopy. Patients in the control group only received 2 L of PEG before colonoscopy. The quality of bowel preparation, procedure time, adenoma detection rate, patients' tolerance, and adverse events were compared. RESULTS: Three hundred patients were included in the study (150 in the control group, 150 in the gum group). More than 90% of patients in both groups were satisfied with the process of bowel preparation, and the incidence of adverse events was comparable in the 2 groups (41.3% vs 46.0%, P = .42). The mean Boston Bowel Preparation Scale score was 6.2 ± 1.4 and 6.1 ± 1.2 in the control group and the gum group, respectively, and the difference between the 2 groups was not significant (P = .51). CONCLUSIONS: This study indicates that gum chewing does not improve the quality of bowel preparation for colonoscopy, but it can improve patients' satisfaction with the process of bowel preparation and does not have negative effects on cleanliness. (Clinical trials registration number: NCT02507037.).


Assuntos
Adenoma/diagnóstico por imagem , Goma de Mascar , Colonoscopia , Neoplasias Colorretais/diagnóstico por imagem , Adulto , Catárticos/administração & dosagem , Catárticos/efeitos adversos , Goma de Mascar/efeitos adversos , Colonoscopia/efeitos adversos , Colonoscopia/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Satisfação do Paciente , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Método Simples-Cego
9.
Mol Pharm ; 13(12): 4106-4115, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934482

RESUMO

Many conjugates of water-soluble polymers with biologically active molecules were developed during the last two decades. Although, therapeutic effects of these conjugates are affected by the properties of carriers, the properties of the attached drugs appear more important than the same carrier polymer in this case. Pirarubicin (THP), a tetrahydropyranyl derivative of doxorubicin (DOX), demonstrated more rapid cellular internalization and potent cytotoxicity than DOX. Here, we conjugated the THP or DOX to N-(2-hydroxypropyl)methacrylamide copolymer via a hydrazone bond. The polymeric prodrug conjugates, P-THP and P-DOX, respectively, had comparable hydrodynamic sizes and drug loading. Compared with P-DOX, P-THP showed approximately 10 times greater cellular uptake during a 240 min incubation and a cytotoxicity that was more than 10 times higher during a 72-h incubation. A marginal difference was seen in P-THP and P-DOX accumulation in the liver and kidney at 6 h after drug administration, but no significant difference occurred in the tumor drug concentration during 6-24 h after drug administration. Antitumor activity against xenograft human pancreatic tumor (SUIT2) in mice was greater for P-THP than for P-DOX. To sum up, the present study compared the biological behavior of two different drugs, each attached to an N-(2-hydroxypropyl)methacrylamide copolymer carrier, with regard to their uptake by tumor cells, body distribution, accumulation in tumors, cytotoxicity, and antitumor activity in vitro and in vivo. No differences in the tumor cell uptake of the polymer-drug conjugates, P-THP and P-DOX, were observed. In contrast, the intracellular uptake of free THP liberated from the P-THP was 25-30 times higher than that of DOX liberated from P-DOX. This finding indicates that proper selection of the carrier, and especially conjugated active pharmaceutical ingredient (API) are most critical for anticancer activity of the polymer-drug conjugates. THP, in this respect, was found to be a more preferable API for polymer conjugation than DOX. Hence the treatment based on enhanced permeability and retention (EPR) effect that targets more selectively to solid tumors can be best achieved with THP, although both polymer conjugates of DOX and THP exhibited the EPR effects and drug release profiles in acidic pH similarly.


Assuntos
Acrilamidas/química , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Polímeros/química , Animais , Antibióticos Antineoplásicos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/administração & dosagem , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Gan To Kagaku Ryoho ; 43(5): 549-57, 2016 May.
Artigo em Japonês | MEDLINE | ID: mdl-27210083

RESUMO

The enhanced permeability and retention (EPR) effect, a tumor-targeting principle of nanomedicine, serves as a standard for tumor-targeted anticancer drug design. There are 3 key issues in ideal EPR-based antitumor drug design: i) stability in blood circulation; ii) tumor-selective accumulation (EPR effect) and efficient release of the active anticancer moiety in tumor tissues; and iii) the active uptake of the active drug into tumor cells. Using these principles, we developed N-(2- hydroxypropyl)methacrylamide (HPMA) copolymer-conjugated pirarubicin (P-THP), which uses hydrazone bond linkage; it was shown to exhibit prolonged circulation time, thereby resulting in good tumor-selective accumulation. More importantly, the hydrazone bond ensured selective and rapid release of the active drug, pirarubicin (THP), in acidic tumor environments. Further, compared to other anthracycline anticancer drugs (eg, doxorubicin), THP demonstrated more rapid intracellular uptake. Consequently, P-THP showed remarkable antitumor effect with minimal side effects. In a clinical pilot study of a stage IV prostate cancer patient with multiple metastases in the lung and bone, P-THP (50-75 mg administered once every 2-3 weeks) was shown to clear the metastatic nodules in the lung almost completely after 3 treatments where 50-70 mg THP equivalent each was administerd per 70 kg body wt, and bone metastasis disappeared after 6 months. There was no recurrence after 2 years. The patient also retained an excellent quality of life during the treatment without any apparent side effects. Thus, we propose the clinical development of P-THP as an EPR-based tumor-targeted anticancer drug.


Assuntos
Antineoplásicos/uso terapêutico , Permeabilidade da Membrana Celular , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Ensaios Clínicos como Assunto , Humanos , Polímeros/efeitos adversos , Polímeros/química , Microambiente Tumoral
11.
Cancer Sci ; 106(3): 270-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529761

RESUMO

Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene-maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer-drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Portadores de Fármacos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Maleatos/farmacologia , Poliestirenos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/síntese química , Células HeLa , Humanos , Neoplasias Pulmonares/secundário , Masculino , Maleatos/efeitos adversos , Maleatos/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Proteínas Mitocondriais , Poliestirenos/efeitos adversos , Poliestirenos/síntese química , Ratos , Ratos Sprague-Dawley
12.
Biomacromolecules ; 16(5): 1622-33, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25891476

RESUMO

Although the thiol click reaction is an attractive tool for postpolymerization modification of thiolmers, thiol groups are easily oxidized, limiting the potential for covalent immobilization of bioactive molecules. In this study, a series of biodegradable polyurethane elastomers incorporating stable cyclic disulfide groups was developed and characterized. These poly(ester urethane)urea (PEUU-SS) polymers were based on polycaprolactone diol (PCL), oxidized dl-dithiothreitol (O-DTT), lysine diisocyanate (LDI), or butyl diisocyanate (BDI), with chain extension by putrescine. The ratio of O-DTT:PCL was altered to investigate different levels of potential functionalization. PEG acrylate was employed to study the mechanism and availability of both bulk and surface click modification of PEUU-SS polymers. All synthesized PEUU-SS polymers were elastic with breaking strengths of 38-45 MPa, while the PEUU-SS(LDI) polymers were more amorphous, possessing lower moduli and relatively small permanent deformations versus PEUU-SS(BDI) polymers. Variable bulk click modification of PEUU-SS(LDI) polymers was achieved by controlling the amount of reduction reagent, and rapid reaction rates occurred using a one-pot, two-step process. Likewise, surface click reaction could be carried out quickly under mild, aqueous conditions. Furthermore, a maleimide-modified affinity peptide (TPS) was successfully clicked on the surface of an electrospun PEUU-SS(BDI) fibrous sheet, which improved endothelial progenitor cell adhesion versus corresponding unmodified films. The cyclic disulfide containing biodegradable polyurethanes described provide an option for cardiovascular and other soft tissue regenerative medicine applications where a temporary, elastic scaffold with designed biofunctionality from a relatively simple click chemistry approach is desired.


Assuntos
Plásticos Biodegradáveis/química , Poliuretanos/química , Compostos de Sulfidrila/química , Dissulfetos/química , Elastômeros/química , Ureia/química
13.
Int J Mol Sci ; 16(5): 9119-33, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25915027

RESUMO

Four new (1-4), along with six known (5-10) dihydro-ß-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The new compounds were structurally elucidated through spectroscopic analysis including UV (Ultraviolet Spectrum), IR (Infrared Spectrum), ¹H-NMR (¹Hydrogen-Nuclear Magnetic Resonance), ¹³C-NMR (¹³Carbon-Nuclear Magnetic Resonance), DEPT (Distortionless Enhancement by Polarization Transfer), ¹H-¹H COSY (¹H-¹H Correlation Spectroscopy), HSQC (Heteronuclear Single Quantum Coherence), HMBC (Heteronuclear Multiple Bond Correlation), NOESY (Nuclear Overhauser Enhancement Spectroscopy) and HR-MS (High Resolution Mass Specttrum) and their absolute configurations were proposed by comparison of NOESY spectra and specific optical rotations with those of known compounds and biosynthesis grounds. Compound 2 is the first sesquiterpene alkaloid isolated from this plant. New compounds 1-4 exhibited some cytotoxic activities against NB4, MKN-45 and MCF-7 cells at 20 µM and of which 4 showed the highest activity against NB4 and MKN-45 cells with inhibition rates of 85.6% and 30.5%, respectively.


Assuntos
Poliésteres/química , Sesquiterpenos/química , Estreptófitas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química
14.
J Cell Physiol ; 228(1): 207-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22674471

RESUMO

Multipotent mesenchymal stem cells are derived from the dental pulps of permanent teeth and exfoliated deciduous teeth, and are known to induce bone and dentin generation. However, the role of deciduous dental pulp stem cells (DDPSCs) in physiologic root resorption remains unclear. In this study, dental pulp stem cells (DPSCs) in permanent teeth (P) were retrieved and compared to DDPSCs from deciduous incisors at different root resorption stages: stable (S), middle (M), and final (F). Decalcified teeth sections showed that osteoclasts and resorption lacunae were most prevalent in the M resorption stage. DDPSC proliferation rate was also highest in the M stage. DDPSCs in the F stage produced more calcified nodules than those in the S or M stages. Alkaline phosphatase (ALP) expression was highest in the F stage, indicating that DDPSCs promote mineralization. In addition, the ratio of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) expression was significantly higher in the M stage, indicating that DDPSCs promote resorption. Dickkopf 1 (Dkk1) expression was remarkably higher in the F and P groups, suggesting that the Wnt pathway is inhibited during the resorption process. Interestingly, despite the fact that Wnt3a down-regulated OPG in osteogenic induction medium and up-regulated RANKL in medium with 1,25-dihydroxy vitamin D3 (VD(3) ), the RANKL/OPG ratio was reduced only with VD(3) . Collectively, our data indicate that DDPSCs influence osteoclastogenesis during the physiologic root resorption process, and that the canonical Wnt pathway can change the RANKL/OPG expression ratio in DDPSCs.


Assuntos
Polpa Dentária/citologia , Osteoclastos/citologia , Células-Tronco/citologia , Raiz Dentária/fisiologia , Dente Decíduo/citologia , Adolescente , Criança , Regulação da Expressão Gênica , Humanos , Osteoclastos/fisiologia , Osteogênese/genética , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Células-Tronco/fisiologia , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
15.
Mol Pharm ; 10(8): 3090-102, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23808658

RESUMO

The success of gene therapy largely relies on a safe and effective gene delivery system. The objective of this study is to design a highly efficient system for the transfection of epidermal stem cells (ESCs) and investigate the transfected ESCs (TESCs) as a therapeutic agent and gene delivery reservoir for wound treatment. As a nonviral vector, ß-cyclodextrin-linked polyethylenimines (CYD-PEI) was synthesized by linking ß-cyclodextrin with polyethylenimines (600 Da). Gelatin scaffold incorporating ß-tricalcium phosphate (ß-TCP) was utilized as a substrate for the culture and transfection of ESCs. With the CYD-PEI/pDNA-VEGF165 polyplexes incorporated gelatin/ß-TCP scaffold based 3D transfection system, prolonged VEGF expression with a higher level was obtained at day 7 in ESCs than those in two-dimensional plates. Topical application of the TESCs significantly accelerated the skin re-epithelization, dermal collagen synthesis, and hair follicle regeneration. It also exhibited a potential in scar inhibition by regulating the distribution of different types of collagen. In contrast to ESCs, an additive capacity in stimulating angiogenesis at the wound site was observed in the TESCs. The present study provides a basis for the TESCs as a promising therapeutic agent and gene delivery reservoir for wound therapy.


Assuntos
Fosfatos de Cálcio/química , Células Epidérmicas , Gelatina/química , Polietilenoimina/química , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/efeitos da radiação , beta-Ciclodextrinas/química , Animais , Células Cultivadas , Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/fisiologia , Cicatrização/fisiologia
16.
Int J Biol Macromol ; 247: 125614, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414320

RESUMO

In recent years, the accelerated development of G-quadruplexes and hydrogels has driven the development of intelligent biomaterials. Based on the excellent biocompatibility and special biological functions of G-quadruplexes, and the hydrophilicity, high-water retention, high water content, flexibility and excellent biodegradability of hydrogels, G-quadruplex hydrogels are widely used in various fields by combining the dual advantages of G-quadruplexes and hydrogels. Here, we provide a systematic and comprehensive classification of G-quadruplex hydrogels in terms of preparation strategies and applications. This paper reveals how G-quadruplex hydrogels skillfully utilize the special biological functions of G-quadruplexes and the skeleton structure of hydrogels, and expounds its applications in the fields of biomedicine, biocatalysis, biosensing and biomaterials. In addition, we deeply analyze the challenges in preparation, applications, stability and safety of G-quadruplex hydrogels, as well as potential future development directions.


Assuntos
Materiais Biocompatíveis , Quadruplex G , Hidrogéis , Hidrogéis/química , Hidrogéis/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Técnicas Biossensoriais , Cicatrização , Infecções/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais
17.
Theranostics ; 13(14): 4952-4973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771769

RESUMO

Background: Efficient theranostic strategies concurrently bring and use both the therapeutic and diagnostic features, serving as a cutting-edge tool to combat advanced cancers. Goals of the Investigation: Here, we develop stimuli-sensitive theranostics consisting of tailored copolymers forming micellar conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds, thus enabling the tumor microenvironment-sensitive activation of the photodynamic therapy (PDT) effect, fluorescence or phosphorescence. Results: The nanomedicines show superior anti-tumor PDT efficacy and huge tumor-imaging potential, while reducing their accumulation, and potentially side effects, in the liver and spleen. The developed theranostics exhibit clear selective tumor accumulation at high levels in the mouse sarcoma S180 tumor model with almost no PyF found in the healthy tissues after 48 h. Once in the tumor, illumination at λexc = 420 nm reaches the therapeutic effect due to the 1O2 generation. Indeed, an almost complete inhibition of tumor growth is observed up to 18 days after the treatment. Conclusion: The clear benefit of the specific PyF release and activation in the acidic tumor environment for the targeted delivery and tissue distribution dynamics was proved. Conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds showed their excellent antitumor PDT effect and its applicability as advanced theranostics at very low dose of PyF.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Polímeros/química , Medicina de Precisão , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Hidrazonas/uso terapêutico , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
18.
Stem Cells ; 29(12): 2018-29, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21997852

RESUMO

An urgent need exists in clinical medicine for suitable alternatives to available techniques for bone tissue repair. Human adipose-derived stem cells (hASCs) represent a readily available, autogenous cell source with well-documented in vivo osteogenic potential. In this article, we manipulated Noggin expression levels in hASCs using lentiviral and nonintegrating minicircle short hairpin ribonucleic acid (shRNA) methodologies in vitro and in vivo to enhance hASC osteogenesis. Human ASCs with Noggin knockdown showed significantly increased bone morphogenetic protein (BMP) signaling and osteogenic differentiation both in vitro and in vivo, and when placed onto a BMP-releasing scaffold embedded with lentiviral Noggin shRNA particles, hASCs more rapidly healed mouse calvarial defects. This study therefore suggests that genetic targeting of hASCs combined with custom scaffold design can optimize hASCs for skeletal regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea , Osteogênese , Células-Tronco/metabolismo , Alicerces Teciduais/química , Tecido Adiposo/metabolismo , Adulto , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Implantes Experimentais , Ácido Láctico/química , Ácido Láctico/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Pessoa de Meia-Idade , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Crânio/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Engenharia Tecidual/métodos , Adulto Jovem
19.
Methods Mol Biol ; 2375: 47-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34591298

RESUMO

There is a tremendous clinical need for synthetic vascular grafts either for bypass procedure or vascular access during hemodialysis. However, currently, there is no small-diameter vascular graft commercially available to meet long-term patency requirement due to frequent thrombus formation and intimal hyperplasia. This chapter describes the fabrication of electrospun small-diameter polycarbonate-urethane (PCU) vascular graft with a biomimetic fibrous structure. Additionally, the surface of the vascular graft is aminated via plasma treatment for the subsequently end-point heparin immobilization to enhance antithrombosis property.


Assuntos
Uretana/química , Prótese Vascular , Heparina , Cimento de Policarboxilato , Grau de Desobstrução Vascular
20.
ACS Appl Bio Mater ; 5(12): 5953-5964, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36480740

RESUMO

The development of effective anticancer drugs is essential for chemotherapy that specifically targets cancer tissues. We recently synthesized a multifunctional water-soluble anticancer polymer drug consisting of styrene-maleic acid copolymer (SMA) conjugated with glucosamine and boric acid (BA) (SGB complex). It demonstrated about 10 times higher tumor-selective accumulation compared with accumulation in normal tissues because of the enhanced permeability and retention effect, and it inhibited tumor growth via glycolysis inhibition, mitochondrial damage, and thermal neutron irradiation. Gaining insight into the anticancer effects of this SGB complex requires a determination of its structure. We therefore investigated the chemical structure of the SGB complex by means of nuclear magnetic resonance, infrared (IR) spectroscopy, and liquid chromatography-mass spectrometry. To establish the chemical structure of the SGB complex, we synthesized a simple model compound─maleic acid-glucosamine (MAG) conjugate─by using a maleic anhydride (MA) monomer unit instead of the SMA polymer. We obtained two MAG-BA complexes (MAGB) with molecular weights of 325 and 343 after the MAG reaction with BA. We confirmed, by using IR spectroscopy, that MAGB formed a stable complex via an amide bond between MA and glucosamine and that BA bound to glucosamine via a diol bond. As a result of this chemical design, identified via analysis of MAGB, the SGB complex can release BA and demonstrate toxicity to cancer cells through inhibition of lactate secretion in mild hypoxia that mimics the tumor microenvironment. For clinical application of the SGB complex, we confirmed that this complex is stable in the presence of serum. These findings confirm that our design of the SGB complex has various advantages in targeting solid cancers and exerting therapeutic effects when combined with neutron irradiation.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Boratos , Glucosamina , Poliestirenos/química , Antineoplásicos/farmacologia , Polímeros/química , Anidridos Maleicos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA