Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 31(2): 360-368, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31095372

RESUMO

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects' plaques.


Assuntos
Aterosclerose/diagnóstico por imagem , Lipossomos/análise , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/análise , Zircônio/análise , Animais , Aorta Abdominal/diagnóstico por imagem , Masculino , Coelhos , Distribuição Tecidual
2.
J Nucl Cardiol ; 27(4): 1126-1141, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31667675

RESUMO

BACKGROUND: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS: We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Adulto , Animais , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos , Fluoreto de Sódio
4.
Bioconjug Chem ; 26(3): 443-51, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25650634

RESUMO

High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.


Assuntos
Materiais Biomiméticos/metabolismo , Ácido Láctico/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Nanopartículas/metabolismo , Placa Aterosclerótica/metabolismo , Ácido Poliglicólico/metabolismo , Animais , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/química , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Nanomedicine ; 11(5): 1133-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791805

RESUMO

The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100nm±10nm, with a prednisolone phosphate (PLP) incorporation efficiency of 3%-5%. Pharmacokinetics and toxicokinetics of GMP-grade liposomal nanoparticles were evaluated in healthy rats, which were compared to daily and weekly administration of free prednisolone phosphate, revealing a long circulatory half-life with minimal side effects. Subsequently, non-invasive multimodal clinical imaging after liposomal nanotherapy's intravenous administration revealed anti-inflammatory effects on the vessel wall of atherosclerotic rabbits. The present program led to institutional review board approval for two clinical trials with patients with atherosclerosis. FROM THE CLINICAL EDITOR: In drug discovery, bringing production to industrial scale is an essential process. In this article the authors describe the development of an anti-inflammatory nanoparticle according to good manufacturing practice. As a result, this paves the way for translating laboratory studies to clinical trials in humans.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aterosclerose/tratamento farmacológico , Química Farmacêutica/métodos , Glucocorticoides/administração & dosagem , Prednisolona/análogos & derivados , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/patologia , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapêutico , Glucocorticoides/toxicidade , Meia-Vida , Humanos , Lipossomos , Masculino , Prednisolona/administração & dosagem , Prednisolona/farmacocinética , Prednisolona/uso terapêutico , Prednisolona/toxicidade , Coelhos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
6.
Nanomedicine ; 11(5): 1039-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791806

RESUMO

Drug delivery to atherosclerotic plaques via liposomal nanoparticles may improve therapeutic agents' risk-benefit ratios. Our paper details the first clinical studies of a liposomal nanoparticle encapsulating prednisolone (LN-PLP) in atherosclerosis. First, PLP's liposomal encapsulation improved its pharmacokinetic profile in humans (n=13) as attested by an increased plasma half-life of 63h (LN-PLP 1.5mg/kg). Second, intravenously infused LN-PLP appeared in 75% of the macrophages isolated from iliofemoral plaques of patients (n=14) referred for vascular surgery in a randomized, placebo-controlled trial. LN-PLP treatment did however not reduce arterial wall permeability or inflammation in patients with atherosclerotic disease (n=30), as assessed by multimodal imaging in a subsequent randomized, placebo-controlled study. In conclusion, we successfully delivered a long-circulating nanoparticle to atherosclerotic plaque macrophages in patients, whereas prednisolone accumulation in atherosclerotic lesions had no anti-inflammatory effect. Nonetheless, the present study provides guidance for development and imaging-assisted evaluation of future nanomedicine in atherosclerosis. FROM THE CLINICAL EDITOR: In this study, the authors undertook the first clinical trial using long-circulating liposomal nanoparticle encapsulating prednisolone in patients with atherosclerosis, based on previous animal studies. Despite little evidence of anti-inflammatory effect, the results have provided a starting point for future development of nanomedicine in cardiovascular diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aterosclerose/tratamento farmacológico , Glucocorticoides/administração & dosagem , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Prednisolona/administração & dosagem , Administração Intravenosa , Adulto , Idoso , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Artérias/efeitos dos fármacos , Artérias/patologia , Aterosclerose/patologia , Feminino , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapêutico , Humanos , Lipossomos , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia , Prednisolona/farmacocinética , Prednisolona/uso terapêutico
7.
Bioconjug Chem ; 24(9): 1429-34, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23957728

RESUMO

For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico/química , Camundongos , Camundongos Nus , Nanopartículas/química , Niacinamida/administração & dosagem , Niacinamida/farmacocinética , Imagem Óptica/métodos , Compostos de Fenilureia/farmacocinética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sorafenibe
8.
NMR Biomed ; 26(7): 766-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23303729

RESUMO

Inorganic nanocrystals have myriad applications in medicine, including their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. In MRI, nanocrystals can produce contrast themselves, with iron oxides having been the most extensively explored, or can be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used for imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. As a result of these exciting applications, the synthesis and rendering of these nanocrystals as water soluble and biocompatible are therefore highly desirable. We discuss aqueous phase and organic phase methods for the synthesis of inorganic nanocrystals, such as gold, iron oxides and quantum dots. The pros and cons of the various methods are highlighted. We explore various methods for making nanocrystals biocompatible, i.e. direct synthesis of nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples are highlighted and their applications explained. These examples signify that the synthesis of biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied to a wide range of applications. Therefore, we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings.


Assuntos
Meios de Contraste/química , Meios de Contraste/síntese química , Compostos Inorgânicos/química , Compostos Inorgânicos/síntese química , Imageamento por Ressonância Magnética , Nanopartículas/química , Animais , Materiais Biocompatíveis/síntese química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/ultraestrutura
9.
Nano Lett ; 12(7): 3587-91, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22716029

RESUMO

Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process but are restricted by a low throughput. In this study, we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e., Reynolds number (30-150)) we can control the nanoparticle size (30-170 nm) with high productivity (∼3 g/hour) and low polydispersity (∼0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery.


Assuntos
Lipídeos/química , Técnicas Analíticas Microfluídicas , Nanopartículas/química , Polímeros/química , Peso Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Bioconjug Chem ; 23(5): 941-50, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22471239

RESUMO

Inorganic nanocrystals have a variety of applications in medicine. They may serve as contrast agents, therapeutics, and for in vitro diagnostics. Frequently, the synthesis route yields hydrophobically capped nanocrystals, which necessitates their subsequent coating to render a water-soluble and biocompatible probe. Biocompatibility is crucial for cellular imaging applications, which require large quantities of diagnostically active nanoparticles to be loaded into cells. We have previously reported the design and synthesis of a fluorescent and magnetic resonance imaging-detectable core-shell nanoparticle that encapsulates hydrophobically coated iron oxide nanocrystals. The core of soybean oil and iron oxide is covered by a shell mixture of phospholipids, some of which contained polyethylene glycol. Despite the biocompatibility of these components, we hypothesize that we can improve this formulation with respect to in vitro toxicity. To this aim, we measured the effect of six different core compositions on nanoparticle structure, cell labeling efficacy, and cell viability, as well as cell tracking potential. We methodically investigated the causes of toxicity and conclude that, even when combining biocompatible materials, the resulting formulation is not guaranteed to be biocompatible.


Assuntos
Meios de Contraste/análise , Compostos Férricos/análise , Imageamento por Ressonância Magnética , Nanopartículas/análise , Animais , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/toxicidade , Compostos Férricos/toxicidade , Corantes Fluorescentes/análise , Corantes Fluorescentes/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Camundongos , Microscopia de Fluorescência , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Polietilenoglicóis/análise , Polietilenoglicóis/toxicidade
11.
Bioconjug Chem ; 22(3): 353-61, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21361312

RESUMO

There are many liver diseases that could be treated with delivery of therapeutics such as DNA, proteins, or small molecules. Nanoparticles are often proposed as delivery vectors for such therapeutics; however, achieving nanoparticle accumulations in the therapeutically relevant hepatocytes is challenging. In order to address this issue, we have synthesized polymer coated, fluorescent iron oxide nanoparticles that bind and deliver DNA, as well as produce contrast for magnetic resonance imaging (MRI), fluorescence imaging, and transmission electron microscopy (TEM). The composition of the coating can be varied in a facile manner to increase the quantity of poly(ethylene glycol) (PEG) from 0% to 5%, 10%, or 25%, with the aim of reducing opsonization but maintaining DNA binding. We investigated the effect of the nanoparticle coating on DNA binding, cell uptake, cell transfection, and opsonization in vitro. Furthermore, we exploited MRI, fluorescence imaging, and TEM to investigate the distribution of the different formulations in the liver of mice. While MRI and fluorescence imaging showed that each formulation was heavily taken up in the liver at 24 h, the 10% PEG formulation was taken up by the therapeutically relevant hepatocytes more extensively than either the 0% PEG or the 5% PEG, indicating its potential for delivery of therapeutics to the liver.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Fígado/citologia , Fígado/metabolismo , Nanopartículas/química , Animais , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Compostos Férricos/química , Compostos Férricos/metabolismo , Compostos Férricos/farmacocinética , Compostos Férricos/toxicidade , Células HEK293 , Meia-Vida , Humanos , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/toxicidade , Polietilenoglicóis/química
12.
Acc Chem Res ; 42(7): 904-14, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19435319

RESUMO

Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging, with the main focus on magnetic resonance imaging (MRI), optical techniques, and transmission electron microscopy (TEM). The functionalization of the nanoparticles and the modulation of their pharmacokinetics are discussed. Their application for molecular imaging of key processes in cancer and cardiovascular disease are shown. Finally, we discuss a recent development in which the endogenous nanoparticle HDL was modified to carry different diagnostically active nanocrystal cores to enable multimodal imaging of macrophages in experimental atherosclerosis. The multimodal characteristics of the different contrast agent platforms have proven to be extremely valuable for validation purposes and for understanding mechanisms of particle-target interaction at different levels, ranging from the entire organism down to cellular organelles.


Assuntos
Diagnóstico por Imagem , Lipídeos/química , Nanopartículas , Animais , Doenças Cardiovasculares/patologia , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Corantes Fluorescentes/química , Ouro/química , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Micelas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Neoplasias/patologia , Pontos Quânticos , Dióxido de Silício/química , Tensoativos/química
13.
Mol Pharm ; 7(6): 2020-9, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21028895

RESUMO

Atherosclerosis is an inflammatory disease causing great morbidity and mortality in the Western world. To increase the anti-inflammatory action and decrease adverse effects of glucocorticoids (PLP), a nanomedicinal liposomal formulation of this drug (L-PLP) was developed and intravenously applied at a dose of 15 mg/kg PLP to a rabbit model of atherosclerosis. Since atherosclerosis is a systemic disease, emerging imaging modalities for assessing atherosclerotic plaque are being developed. (18)F-Fluoro-deoxy-glucose positron emission tomography and dynamic contrast enhanced magnetic resonance imaging, methods commonly used in oncology, were applied to longitudinally assess therapeutic efficacy. Significant anti-inflammatory effects were observed as early as 2 days that lasted up to at least 7 days after administration of a single dose of L-PLP. No significant changes were found for the free PLP treated animals. These findings were corroborated by immunohistochemical analysis of macrophage density in the vessel wall. In conclusion, this study evaluates a powerful two-pronged strategy for efficient treatment of atherosclerosis that includes nanomedical therapy of atherosclerotic plaques and the application of noninvasive and clinically approved imaging techniques to monitor delivery and therapeutic responses. Importantly, we demonstrate unprecedented rapid anti-inflammatory effects in atherosclerotic lesions after the nanomedical therapy.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Arteriosclerose/tratamento farmacológico , Glucocorticoides/uso terapêutico , Nanomedicina , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Glucocorticoides/farmacocinética , Lipossomos/química , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Coelhos
14.
Magn Reson Med ; 62(5): 1195-201, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19780153

RESUMO

Vulnerable or high-risk atherosclerotic plaques often exhibit large lipid cores and thin fibrous caps that can lead to deadly vascular events when they rupture. In this study, polyethylene glycol (PEG)-micelles that incorporate a gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) amphiphile were used as an MR contrast agent. In an approach inspired by lipoproteins, the micelles were functionalized with tyrosine residues, an aromatic, lipophilic amino acid, to reach the lipid-rich areas of atherosclerotic plaque in a highly efficient manner. These micelles were applied to apolipoprotein E(-/-) (ApoE(-/-)) mice as a model of atherosclerosis. The abdominal aortas of the animals were imaged using T(1)-weighted (T(1)W) high-resolution MRI at 9.4T before and up to 48 h after the administration of the micelles. PEG-micelles modified with 15% tyrosine residues yielded a significant enhancement of the abdominal aortic wall at 6 and 24 h postinjection (pi) as compared to unmodified micelles. Fluorescence microscopy on histological sections of the abdominal aorta showed a correlation between lipid-rich areas and the distribution of the functionalized contrast agent in plaque. Using a simple approach, we demonstrated that lipid-rich areas in atherosclerotic plaque of ApoE(-/-) mice can be detected by MRI using Gd-DTPA micelles.


Assuntos
Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Portadores de Fármacos/química , Gadolínio DTPA , Metabolismo dos Lipídeos , Angiografia por Ressonância Magnética/métodos , Polietilenoglicóis/química , Tirosina/química , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Meios de Contraste/química , Gadolínio DTPA/química , Aumento da Imagem/métodos , Camundongos , Camundongos Knockout , Micelas
15.
Contrast Media Mol Imaging ; 2019: 3438093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800014

RESUMO

Positron emission tomography (PET) provides simple noninvasive imaging biomarkers for multiple human diseases which can be used to produce quantitative information from single static images or to monitor dynamic processes. Such kinetic studies often require the tracer input function (IF) to be measured but, in contrast to direct blood sampling, the image-derived input function (IDIF) provides a noninvasive alternative technique to estimate the IF. Accurate estimation can, in general, be challenging due to the partial volume effect (PVE), which is particularly important in preclinical work on small animals. The recently proposed hybrid kernelised ordered subsets expectation maximisation (HKEM) method has been shown to improve accuracy and contrast across a range of different datasets and count levels and can be used on PET/MR or PET/CT data. In this work, we apply the method with the purpose of providing accurate estimates of the aorta IDIF for rabbit PET studies. In addition, we proposed a method for the extraction of the aorta region of interest (ROI) using the MR and the HKEM image, to minimise the PVE within the rabbit aortic region-a method which can be directly transferred to the clinical setting. A realistic simulation study was performed with ten independent noise realisations while two, real data, rabbit datasets, acquired with the Biograph Siemens mMR PET/MR scanner, were also considered. For reference and comparison, the data were reconstructed using OSEM, OSEM with Gaussian postfilter and KEM, as well as HKEM. The results across the simulated datasets and different time frames show reduced PVE and accurate IDIF values for the proposed method, with 5% average bias (0.8% minimum and 16% maximum bias). Consistent results were obtained with the real datasets. The results of this study demonstrate that HKEM can be used to accurately estimate the IDIF in preclinical PET/MR studies, such as rabbit mMR data, as well as in clinical human studies. The proposed algorithm is made available as part of an open software library, and it can be used equally successfully on human or animal data acquired from a variety of PET/MR or PET/CT scanners.


Assuntos
Aorta/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Algoritmos , Animais , Cinética , Coelhos , Fluoreto de Sódio/análise
16.
Bioconjug Chem ; 19(12): 2471-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19035793

RESUMO

Silica particles as a nanoparticulate carrier material for contrast agents have received considerable attention the past few years, since the material holds great promise for biomedical applications. A key feature for successful application of this material in vivo is biocompatibility, which may be significantly improved by appropriate surface modification. In this study, we report a novel strategy to coat silica particles with a dense monolayer of paramagnetic and PEGylated lipids. The silica nanoparticles carry a quantum dot in their center and are made target-specific by the conjugation of multiple alphavbeta3-integrin-specific RGD-peptides. We demonstrate their specific uptake by endothelial cells in vitro using fluorescence microscopy, quantitative fluorescence imaging, and magnetic resonance imaging. The lipid-coated silica particles introduced here represent a new platform for nanoparticulate multimodality contrast agents.


Assuntos
Meios de Contraste/química , Fluorescência , Lipídeos/química , Magnetismo , Pontos Quânticos , Dióxido de Silício/química , Animais , Bovinos , Linhagem Celular , Gadolínio DTPA/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Polietilenoglicóis/química , Propriedades de Superfície
17.
J Control Release ; 262: 47-57, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28700897

RESUMO

Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological behavior is crucial for further development of clinically relevant and efficacious nanotherapeutics intended to reduce plaque inflammation. Here, three clinically relevant nanomedicines, i.e., high-density lipoprotein ([S]-HDL), polymeric micelles ([S]-PM), and liposomes ([S]-LIP), that are loaded with the HMG-CoA reductase inhibitor simvastatin [S], were evaluated in the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis. We systematically employed quantitative techniques, including in vivo positron emission tomography imaging, gamma counting, and flow cytometry to evaluate the biodistribution, nanomedicines' uptake by plaque-associated macrophages/monocytes, and their efficacy to reduce macrophage burden in atherosclerotic plaques. The three formulations demonstrated distinct biological behavior in Apoe-/- mice. While [S]-PM and [S]-LIP possessed longer circulation half-lives, the three platforms accumulated to similar levels in atherosclerotic plaques. Moreover, [S]-HDL and [S]-PM showed higher uptake by plaque macrophages in comparison to [S]-LIP, while [S]-PM demonstrated the highest uptake by Ly6Chigh monocytes. Among the three formulations, [S]-PM displayed the highest efficacy in reducing macrophage burden in advanced atherosclerotic plaques. In conclusion, our data demonstrate that [S]-PM is a promising targeted drug delivery system, which can be advanced for the treatment of atherosclerosis and other inflammatory disorders in the clinical settings. Our results also emphasize the importance of a thorough understanding of nanomedicines' biological performance, ranging from the whole body to the target cells, as well drug retention in the nanoparticles. Such systematic investigations would allow rational applications of nanomaterials', beyond cancer, facilitating the expansion of the nanomedicine horizon.


Assuntos
Aterosclerose/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Sinvastatina/administração & dosagem , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Carbocianinas/administração & dosagem , Carbocianinas/farmacocinética , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/farmacocinética , Lipossomos , Camundongos Knockout , Micelas , Nanomedicina , Radioisótopos , Sinvastatina/sangue , Sinvastatina/farmacocinética , Sinvastatina/uso terapêutico , Zircônio
18.
JACC Cardiovasc Imaging ; 10(10 Pt A): 1103-1112, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28109921

RESUMO

OBJECTIVES: The aims of this study were to describe the authors' initial experience with combined coronary artery positron emission tomographic (PET) and magnetic resonance (MR) imaging using 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (18F-NaF) radiotracers, describe common problems and their solutions, and demonstrate the feasibility of coronary PET/MR imaging in appropriate patients. BACKGROUND: Recently, PET imaging has been applied to the aortic valve and regions of atherosclerosis. 18F-FDG PET imaging has become established for imaging inflammation in atherosclerosis in the aorta and carotid arteries. Moreover, 18F-NaF has emerged as a novel tracer of active microcalcification in the aortic valve and coronary arteries. Coronary PET imaging remains challenging because of the small caliber of the vessels and their complex motion. Currently, most coronary imaging uses combined PET and computed tomographic imaging, but there is increasing enthusiasm for PET/MR imaging because of its reduced radiation, potential to correct for motion, and the complementary information available from cardiac MR in a single scan. METHODS: Twenty-three patients with diagnosed or documented risk factors for coronary artery disease underwent either 18F-FDG or 18F-NaF PET/MR imaging. Standard breath-held MR-based attenuation correction was compared with a novel free-breathing approach. The impact on PET image artifacts and the interpretation of vascular uptake were evaluated semiquantitatively by expert readers. Moreover, PET reconstructions with more algorithm iterations were compared visually and by target-to-background ratio. RESULTS: Image quality was significantly improved by novel free-breathing attenuation correction. Moreover, conspicuity of coronary uptake was improved by increasing the number of algorithm iterations from 3 to 6. Elevated radiotracer uptake could be localized to individual coronary lesions using both 18F-FDG (n = 1, maximal target-to-background ratio = 1.61) and 18F-NaF (n = 7, maximal target-to-background ratio = 1.55 ± 0.37), including in 1 culprit plaque post-myocardial infarction confirmed by myocardial late gadolinium enhancement. CONCLUSIONS: The authors provide the first demonstration of successful, low-radiation (7.2 mSv) PET/MR imaging of inflammation and microcalcification activity in the coronary arteries. However, this requires specialized approaches tailored to coronary imaging for both attenuation correction and PET reconstruction.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons , Calcificação Vascular/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Artefatos , Meios de Contraste/administração & dosagem , Estudos de Viabilidade , Feminino , Radioisótopos de Flúor/administração & dosagem , Fluordesoxiglucose F18/administração & dosagem , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Meglumina/administração & dosagem , Meglumina/análogos & derivados , Pessoa de Meia-Idade , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/administração & dosagem , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Fluoreto de Sódio/administração & dosagem
19.
Nat Commun ; 7: 11838, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27319780

RESUMO

The application of nanoparticle drug formulations, such as nanoliposomal doxorubicin (Doxil), is increasingly integrated in clinical cancer care. Despite nanomedicine's remarkable potential and growth over the last three decades, its clinical benefits for cancer patients vary. Here we report a non-invasive quantitative positron emission tomography (PET) nanoreporter technology that is predictive of therapeutic outcome in individual subjects. In a breast cancer mouse model, we demonstrate that co-injecting Doxil and a Zirconium-89 nanoreporter ((89)Zr-NRep) allows precise doxorubicin (DOX) quantification. Importantly, (89)Zr-NRep uptake also correlates with other types of nanoparticles' tumour accumulation. (89)Zr-NRep PET imaging reveals remarkable accumulation heterogeneity independent of tumour size. We subsequently demonstrate that mice with >25 mg kg(-1) DOX accumulation in tumours had significantly better growth inhibition and enhanced survival. This non-invasive imaging tool may be developed into a robust inclusion criterion for patients amenable to nanotherapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Nanomedicina Teranóstica/métodos , Zircônio/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Transporte Biológico , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Esquema de Medicação , Feminino , Humanos , Neoplasias Mamárias Experimentais/mortalidade , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Compostos Radiofarmacêuticos/administração & dosagem , Análise de Sobrevida , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA