Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(5): 2784-2792, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31001985

RESUMO

The successful application of gene therapy relies on the development of safe and efficient delivery vectors. Cationic polymers such as cell-penetrating peptides (CPPs) can condense genetic material into nanoscale particles, called polyplexes, and induce cellular uptake. With respect to this point, several aspects of the nanoscale structure of polyplexes have remained elusive because of the difficulty in visualizing the molecular arrangement of the two components with nanometer resolution. This limitation has hampered the rational design of polyplexes based on direct structural information. Here, we used super-resolution imaging to study the structure and molecular composition of individual CPP-mRNA polyplexes with nanometer accuracy. We use two-color direct stochastic optical reconstruction microscopy (dSTORM) to unveil the impact of peptide stoichiometry on polyplex structure and composition and to assess their destabilization in blood serum. Our method provides information about the size and composition of individual polyplexes, allowing the study of such properties on a single polyplex basis. Furthermore, the differences in stoichiometry readily explain the differences in cellular uptake behavior. Thus, quantitative dSTORM of polyplexes is complementary to the currently used characterization techniques for understanding the determinants of polyplex activity in vitro and inside cells.


Assuntos
Terapia Genética , Nanopartículas/química , Oligonucleotídeos/farmacologia , RNA Mensageiro/genética , Cátions/química , Cátions/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Vetores Genéticos/química , Vetores Genéticos/farmacologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/farmacologia , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular , Nanopartículas/administração & dosagem , Oligonucleotídeos/química , Polímeros/química , Polímeros/farmacologia , RNA Mensageiro/química , RNA Mensageiro/farmacologia , Transfecção
2.
J Am Chem Soc ; 140(25): 7896-7903, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29786426

RESUMO

The use of enzyme catalysis to power micro- and nanomachines offers unique features such as biocompatibility, versatility, and fuel bioavailability. Yet, the key parameters underlying the motion behavior of enzyme-powered motors are not completely understood. Here, we investigate the role of enzyme distribution and quantity on the generation of active motion. Two different micromotor architectures based on either polystyrene (PS) or polystyrene coated with a rough silicon dioxide shell (PS@SiO2) were explored. A directional propulsion with higher speed was observed for PS@SiO2 motors when compared to their PS counterparts. We made use of stochastically optical reconstruction microscopy (STORM) to precisely detect single urease molecules conjugated to the micromotors surface with a high spatial resolution. An asymmetric distribution of enzymes around the micromotor surface was observed for both PS and PS@SiO2 architectures, indicating that the enzyme distribution was not the only parameter affecting the motion behavior. We quantified the number of enzymes present on the micromotor surface and observed a 10-fold increase in the number of urease molecules for PS@SiO2 motors compared to PS-based micromotors. To further investigate the number of enzymes required to generate a self-propulsion, PS@SiO2 particles were functionalized with varying amounts of urease molecules and the resulting speed and propulsive force were measured by optical tracking and optical tweezers, respectively. Surprisingly, both speed and force depended in a nonlinear fashion on the enzyme coverage. To break symmetry for active propulsion, we found that a certain threshold number of enzymes molecules per micromotor was necessary, indicating that activity may be due to a critical phenomenon. Taken together, these results provide new insights into the design features of micro/nanomotors to ensure an efficient development.


Assuntos
Microesferas , Urease/metabolismo , Aminas/química , Aminas/metabolismo , Tamanho da Partícula , Poliestirenos/química , Poliestirenos/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Urease/química
3.
Nanomedicine ; 14(2): 303-315, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127036

RESUMO

RNAi therapeutics carried a great promise to the area of personalized medicine: the ability to target "undruggable" oncogenic pathways. Nevertheless, their efficient tumor targeting via systemic administration had not been resolved yet. Amphiphilic alkylated poly(α)glutamate amine (APA) can serve as a cationic carrier to the negatively-charged oligonucleotides. APA polymers complexed with siRNA to form round-shaped, homogenous and reproducible nano-sized polyplexes bearing ~50 nm size and slightly negative charge. In addition, APA:siRNA polyplexes were shown to be potent gene regulators in vitro. In light of these preferred physico-chemical characteristics, their performance as systemically-administered siRNA nanocarriers was investigated. Intravenously-injected APA:siRNA polyplexes accumulated selectively in tumors and did not accumulate in the lungs, heart, liver or spleen. Nevertheless, the polyplexes failed to induce specific mRNA degradation, hence neither reduction in tumor volume nor prolonged mice survival was seen.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Micelas , Ácido Poliglutâmico/química , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Animais , Antineoplásicos/química , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Tensoativos/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Quinase 1 Polo-Like
4.
J Am Chem Soc ; 139(46): 16677-16687, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29076736

RESUMO

The dynamic nature of polymeric assemblies makes their stability in biological media a crucial parameter for their potential use as drug delivery systems in vivo. Therefore, it is essential to study and understand the behavior of self-assembled nanocarriers under conditions that will be encountered in vivo such as extreme dilutions and interactions with blood proteins and cells. Herein, using a combination of fluorescence spectroscopy and microscopy, we studied four amphiphilic PEG-dendron hybrids and their self-assembled micelles in order to determine their structure-stability relations. The high molecular precision of the dendritic block enabled us to systematically tune the hydrophobicity and stability of the assembled micelles. Using micelles that change their fluorescent properties upon disassembly, we observed that serum proteins bind to and interact with the polymeric amphiphiles in both their assembled and monomeric states. These interactions strongly affected the stability and enzymatic degradation of the micelles. Finally, using spectrally resolved confocal imaging, we determined the relations between the stability of the polymeric assemblies in biological media and their cell entry. Our results highlight the important interplay between molecular structure, micellar stability, and cell internalization pathways, pinpointing the high sensitivity of stability-activity relations to minor structural changes and the crucial role that these relations play in designing effective polymeric nanostructures for biomedical applications.


Assuntos
Antracenos/química , Polietilenoglicóis/química , Antracenos/metabolismo , Células HeLa , Humanos , Micelas , Polietilenoglicóis/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo
5.
Pharm Res ; 34(5): 1093-1103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28197757

RESUMO

PURPOSE: Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. METHODS: In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. RESULTS: Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. CONCLUSIONS: Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.


Assuntos
Emulsões/química , Ouro/química , Ácido Láctico/química , Nanopartículas Metálicas/química , Ácido Poliglicólico/química , Acetatos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Células HeLa , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Solventes/química , Água/química
6.
Colloids Surf B Biointerfaces ; 222: 113019, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435028

RESUMO

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.


Assuntos
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Distribuição Tecidual , Nanopartículas/química
7.
ACS Appl Bio Mater ; 4(1): 669-681, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33490884

RESUMO

The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.


Assuntos
Micelas , Microfluídica/métodos , Antracenos/química , Técnicas de Cultura de Células em Três Dimensões , Portadores de Fármacos/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microscopia Confocal , Modelos Biológicos , Nanopartículas/química , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Polietilenoglicóis/química , Polímeros/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
8.
Nanoscale ; 11(38): 17869-17877, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31552987

RESUMO

The future of gene therapy relies on the development of efficient and safe delivery vectors. Poly(ß-amino ester)s are promising cationic polymers capable of condensing oligonucleotides into nanoparticles - polyplexes - and deliver them into the cell nucleus, where the gene material would be expressed. The complexation state during the crossing of biological barriers is crucial: polymers should tightly complex DNA before internalization and then release to allow free DNA to reach the nucleus. However, measuring the complexation state in cells is challenging due to the nanometric size of polyplexes and the difficulties to study the two components (polymer and DNA) independently. Here we propose a method to visualize and quantify the two components of a polyplex inside cells, with nanometre scale resolution, using two-colour direct stochastic reconstruction super-resolution microscopy (dSTORM). With our approach, we tracked the complexation state of pBAE polyplexes from cell binding to DNA release and nuclear entry revealing time evolution and the final fate of DNA and pBAE polymers in mammalian cells.


Assuntos
Núcleo Celular/metabolismo , DNA/química , Nanopartículas/química , Oligonucleotídeos/química , Polímeros/química , Transfecção , Animais , Células COS , Chlorocebus aethiops , DNA/farmacologia , Terapia Genética , Humanos , Oligonucleotídeos/farmacologia , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA