Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(7): e2000703, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543518

RESUMO

For polymer semiconductors, the backbone structure plays an essential role in determining their physicochemical properties and charge transport behaviors. In this work, two donor-acceptor-type polymers (P-BDF and P-NDF) based on benzodifuranone (BDF) and naphthodifunarone (NDF) as electron-deficient moieties and indaceno-dithiophene as electron-rich groups are designed, synthesized and, for the first time, applied in organic field-effect transistor. P-BDF and P-NDF differ from their backbone structures while P-BDF has a more planar backbone conformation due to its smaller conjugated core size and P-NDF features a perpendicular-extended main chain structure. As a result, P-BDF polymer exhibits bathochromic optical absorption, deeper molecular orbital energy levels, and more importantly, closer π-stacking and stronger aggregation in the solid state and thus affords a more promising hole mobility of up to 0.85 cm2 V-1 s-1 in OFET devices, while that of the P-NDF-based devices is only 0.55 cm2 V-1 s-1 . The results suggest the great potential of BDF/NDF-type chromophores in constructing novel organic semiconductors and also indicate that the main chain coplanarity of polymer semiconductors is more essential than the sole extension of π-conjugations (especially at the perpendicular direction of polymer main chains) for the design of high-performance OFET materials.


Assuntos
Polímeros , Transistores Eletrônicos , Conformação Molecular , Semicondutores
2.
Macromol Rapid Commun ; 41(12): e2000144, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32400906

RESUMO

A new polymer acceptor poly{(N,N'-bis(2-ethylhexyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl)-alt-5,5-(3,3'-didodecyl-2,2'-bifuran)} (NDI-BFR) made from naphthalenediimide (NDI) and furan-derived head-to-head-linked 3,3'-dialkyl-2,2'-bifuran (BFR) units is reported in this study. Compared to the benchmark polymer poly(naphthalenediimide-alt-bithiophene) (N2200), NDI-BFR exhibits a larger bathochromic shift of absorption maxima (842 nm) with a much higher absorption coefficient (7.2 × 104 m-1 cm-1 ), leading to an ultranarrow optical bandgap of 1.26 eV. Such properties ensure good harvesting of solar light from visible to the near-infrared region in solar cells. Density functional theory calculation reveals that the polymer acceptor NDI-BFR possesses a higher degree of backbone planarity versus the polymer N2200. The polymer NDI-BFR exhibits a decent electron mobility of 0.45 cm2 V-1 s-1 in organic thin-film transistors (OTFTs), and NDI-BFR-based all-polymer solar cells (all-PSCs) achieve a power conversion efficiency (PCE) of 4.39% with a very small energy loss of 0.45 eV by using the environmentally friendly solvent 1,2,4-trimethylbenzene. These results demonstrate that incorporating head-to-head-linked BFR units in the polymer backbone can lead to increased planarity of the polymer backbone, reduced optical bandgap, and improved light absorbing. The study offers useful guidelines for constructing n-type polymers with narrow optical bandgaps.


Assuntos
Fontes de Energia Elétrica , Furanos/química , Imidas/química , Naftalenos/química , Polímeros/química , Energia Solar , Teoria da Densidade Funcional , Transistores Eletrônicos
3.
Macromol Rapid Commun ; 40(23): e1900394, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31702099

RESUMO

Diketopyrrolopyrrole (DPP)-based copolymers have received considerable attention as promising semiconducting materials for high-performance organic thin-film transistors (OTFTs). However, these polymers typically exhibit p-type or ambipolar charge-transporting characteristics in OTFTs due to their high-lying highest occupied molecular orbital (HOMO) energy levels. In this work, a new series of DPP-based n-type polymers have been developed by incorporating fused bithiophene imide oligomers (BTIn) into DPP polymers. The resulting copolymers BTIn-DPP show narrow band gaps as low as 1.27 eV and gradually down-shifted frontier molecular orbital energy levels upon the increment of imide group number. Benefiting from the coplanar backbone conformation, well-delocalized π-system, and favorable polymer chain packing, the optimal polymer in the series shows promising n-type charge transport with an electron mobility up to 0.48 cm2 V-1 s-1 in OTFTs, which is among the highest values for the DPP-based n-type polymers reported to date. The results demonstrate that incorporating fused bithiophene imide oligomers into polymers can serve as a promising strategy for constructing high-performance n-type polymeric semiconductors.


Assuntos
Imidas/química , Cetonas/química , Polímeros/síntese química , Pirróis/química , Tiofenos/química , Teoria da Densidade Funcional , Estrutura Molecular , Polímeros/química , Semicondutores , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA