Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2419-2425, 2023 May.
Artigo em Zh | MEDLINE | ID: mdl-37282871

RESUMO

This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Camundongos , Animais , Feminino , Silibina/uso terapêutico , Células CACO-2 , Polímeros/química , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microambiente Tumoral , Melanoma Maligno Cutâneo
2.
Mol Pharm ; 19(8): 2840-2853, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850109

RESUMO

Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.


Assuntos
Melanoma , Nanopartículas , Linhagem Celular Tumoral , Membrana Celular , Humanos , Ácido Hialurônico/química , Melanoma/tratamento farmacológico , Nanopartículas/química , Paclitaxel/uso terapêutico , Fosfolipídeos , Polietilenoglicóis
3.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3475-3480, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850798

RESUMO

The present study prepared shell-core nanoparticles comprising poly(lactic-co-glycolic acid)(PLGA) cores encapsulated by shells composed of mixed lipids(Lipoid S100 and DSPE-PEG 2000) or polymer F127 to investigate the effects of shell composition on overcoming physiological barriers of gastrointestinal mucus and intestinal epithelial cells and improving bioavailability.The results are expected to provide references for the research on the improvement of the oral bioavailability of Chinese medicine by nanocar-riers. Silibinin(SLB) was used as a model drug to prepare PLGA nanoparticles coated with the shell of mixed lipids(SLB-LPNs) or F127(SLB-FPNs) via a modified nanoprecipitation method.Transmission electron microscopy showed that both LPNs and FPNs were spherical with a core-shell structure.The average particle sizes of SLB-LPNs and SLB-FPNs were(94.13±2.23) and(95.42±4.91) nm, respectively.The Zeta potential values were(-39.3±2.8) and(-17.0±0.2) mV, respectively.X-ray diffraction analysis revealed the presence of SLB in the two types of nanoparticles in a molecular or amorphous state.The ability of nanoparticles to cross both the mucus and epithelial barriers were evaluated using the cellular internalization kinetics assay.LPNs showed a higher rate of cell internalization than FPNs, indicating that LPNs could penetrate the mucus layer and become internalized by cells more rapidly.As revealed by the in vivo pharmacokinetic assay in rats with SLB suspension as the reference, the relative oral bioavailability of SLB-LPNs and SLB-FPNs was 400.37% and 923.31%, respectively.The effect of SLB-FPNs in improving oral bioavailability was more significant than that of SLB-LPNs.In summary, shell composition can influence the ability of nanoparticles to overcome oral physiological bar-riers, such as the mucus layer and intestinal epithelial cells, and improve oral bioavailability.Shell-core structured nanoparticles are promising nanocarriers for oral drug delivery systems.


Assuntos
Nanopartículas , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Muco , Nanopartículas/química , Tamanho da Partícula , Polímeros , Ratos
4.
J Nanobiotechnology ; 19(1): 245, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391438

RESUMO

BACKGROUND: A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS: Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS: The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Fotoquimioterapia/métodos , Células A549 , Animais , Apoptose , Biomimética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Membrana Eritrocítica , Eritrócitos , Humanos , Lipossomos/química , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias , Paclitaxel/farmacologia , Tamanho da Partícula , Células RAW 264.7 , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nanomedicine ; 28: 102212, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334099

RESUMO

Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.


Assuntos
Acroleína/análogos & derivados , Colite Ulcerativa/tratamento farmacológico , Eugenol/uso terapêutico , Acroleína/administração & dosagem , Acroleína/uso terapêutico , Administração Cutânea , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eugenol/administração & dosagem , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipossomos/química , Nanopartículas/química , Transição de Fase , Fosfolipídeos/química , Ratos , Pele/metabolismo
6.
Nanomedicine ; 29: 102237, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534047

RESUMO

Recently, functional liposomes modified with versatile polymer and cell-based- biomimetic nanoparticles have emerged as the most advanced lipid-polymer hybrid nanocarriers (LPNs) for drug delivery. This review highlights the advances of these two LPNs in the delivery of active ingredients and fractions from Chinese medicine with promising therapeutic, chemopreventive, or chemosensitive effects. To understand their complete potency, the relationship between the nanoparticle characteristics and their in vitro and in vivo performance characteristics has been discussed. Polymer-modified liposomes and cell-based biomimetic nanoparticles are beneficial for improving absorption, modulating release, targeting and overcoming multidrug resistance, and reducing side effects. The associated challenges, current limitations, and opportunities in this field are also discussed.


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/uso terapêutico , Medicina Tradicional Chinesa , Nanopartículas/química , Materiais Biomiméticos/uso terapêutico , Portadores de Fármacos/química , Humanos , Lipídeos/química , Lipídeos/fisiologia , Lipossomos/química , Lipossomos/uso terapêutico , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico
7.
AAPS PharmSciTech ; 21(1): 22, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823083

RESUMO

In the present study, a novel transdermal delivery system was developed and its advantages were demonstrated. Ibuprofen is a commonly used anti-inflammatory, antipyretic, and analgesic drug; however, because of its short biological half-life, it must be frequently administered orally and is highly irritating to the digestive tract. To prepare a novel transdermal delivery system for ibuprofen, a microemulsion was used as a drug carrier and dispersed in a hyaluronic acid-based hydrogel (ME/Gel) to increase percutaneous drug absorption while avoiding gastrointestinal tract irritation. The prepared microemulsion had a droplet size of ~ 90 nm, and the microemulsion had good stability in the hydrogel. Rheological tests revealed that the ME/Gel is a pseudoplastic fluid with decreased viscosity and increased shear rate. It displayed a certain viscoelasticity, and the microemulsion distribution displayed minor effects on the rheological characteristics of the hydrogel system. There was no significant difference in the rheology of the ME/Gel at 25°C and 32°C (normal skin surface temperature), which is beneficial for clinical application. Drug transdermal flux was significantly higher than that of the hydrogel and commercial cream groups (p < 0.01). The 24-h cumulative drug permeation amount was 1.42-fold and 2.52-fold higher than that of the hydrogel and cream groups, respectively. By loading into the ME/Gel, the cytotoxicity of the drug to HaCaT cells was reduced. These results indicate that the prepared ME/Gel can effectively improve transdermal ibuprofen delivery and the biosafety of the drug and could therefore have applicability as a drug delivery system.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Ibuprofeno/química , Administração Cutânea , Animais , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Etilenoglicóis/química , Hidrogéis/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Oleicos/química , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
8.
AAPS PharmSciTech ; 20(7): 289, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414349

RESUMO

The aim of this study was to evaluate the use of a novel porous silica carrier, AEROPERL® 300 Pharma (AP), to improve the in vitro release and oral bioavailability of puerarin (PUE) in solid dispersions (SDs). PUE-AP SD formulations with different ratios of drug to silica (RDS) were prepared by the solvent method. The scanning electron microscopy (SEM) results indicated that the dispersion of PUE improved as the concentration of AP was increased. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed that PUE mostly existed in an amorphous state in the SDs. The rate of drug dissolution from the SDs was significantly higher than that from the PUE powder (p < 0.05). The in vitro drug release percentage from the PUE-AP SDs increased as the RDS was reduced. The oral bioavailability of PUE from the SDs improved when using AP, as indicated by AUC(0-∞), which was 2.05 and 2.01 times greater than that of the PUE (API) and PVP K30 SDs, respectively (p < 0.05). The drug content, in vitro release profiles, and the amorphous state of PUE in the PUE-AP SDs showed no significant changes after being stored at room temperature for 6 months or under accelerated conditions (40 ± 2°C, 75 ± 5% relative humidity) for 3 months. AP has a high pore volume, large specific surface area, excellent flowability, and hydrophilic properties, making it capable of improving the dissolution and bioavailability of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos , Isoflavonas/administração & dosagem , Dióxido de Silício/química , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Isoflavonas/farmacocinética , Masculino , Microscopia Eletrônica de Varredura , Porosidade , Povidona/química , Difração de Pó , Ratos , Ratos Sprague-Dawley , Solubilidade
9.
J Nanobiotechnology ; 16(1): 64, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30176941

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease that causes excessive hepatic lipid accumulation. Reducing hepatic lipid deposition is a key issue in treatment and inhibition of NAFLD evolution. Silymarin is a potent hepatoprotective agent; however, it has low oral bioavailability due to its poor aqueous solubility and low membrane permeability. Unfortunately, few studies have addressed the development of convenient oral nanocarriers that can efficiently deliver silymarin to the liver and enhance its lipid-lowering effect. We designed silymarin-loaded lipid polymer hybrid nanoparticles containing chitosan (CS-LPNs) to improve silymarin bioavailability and evaluated their lipid-lowering effect in adiponutrin/patatin-like phospholipase-3 I148M transgenic mice, an NAFLD model. RESULTS: Compared to chitosan-free nanoparticles, CS-LPNs showed 1.92-fold higher uptake by fatty liver cells. Additionally, CS-LPNs significantly reduced TG levels in fatty liver cells in an in vitro lipid deposition assay, suggesting their potential lipid-lowering effects. The oral bioavailability of silymarin from CS-LPNs was 14.38-fold higher than that from suspensions in rats. Moreover, compared with chitosan-free nanoparticles, CS-LPNs effectively reduced blood lipid levels (TG), improved liver function (AST and ALT), and reduced lipid accumulation in the livers of mice in vivo. Reduced macrovesicular steatosis in pathological tissue after CS-LPN treatment indicated their protective effect against liver steatosis in NAFLD. CONCLUSIONS: CS-LPNs enhanced oral delivery of silymarin and exhibited a desirable lipid-lowering effect in a mouse model. These findings suggest that CS-LPNs may be a promising oral nanocarrier for NAFLD therapeutics.


Assuntos
Quitosana/química , Ácido Láctico/química , Lipídeos/química , Nanopartículas/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ácido Poliglicólico/química , Silimarina/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Preparações de Ação Retardada/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Células Hep G2 , Humanos , Fígado , Masculino , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Wistar , Silimarina/administração & dosagem , Silimarina/uso terapêutico , Propriedades de Superfície
10.
J Nanobiotechnology ; 16(1): 91, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30428875

RESUMO

BACKGROUND: Microdialysis is promising technique for dynamic microbiochemical sampling from tissues. However, the application of typical aqueous perfusates to liposoluble substances is limited. In this study, a novel microemulsion (ME)-based isotonic perfusate (RS-ME) was prepared to improve the recovery of liposoluble components using microdialysis probes. RESULTS: Based on pseudo-ternary phase diagrams and comparisons of the ME area, Kolliphor® EL and Transcutol® P were selected as the surfactant and co-surfactant, respectively, with a weight ratio (Km) of 2:1 and ethyl oleate as the oil phase. The ME was mixed with Ringer's solution at a 1:6 ratio (v/v) to obtain the isotonic RS-ME. The droplet size distribution of the ME in RS-ME was 78.3 ± 9.2 nm, with a zeta potential of - 3.5 ± 0.3 mV. By microdialysis perfusion, RS-ME achieved higher recovery rates of the poorly water-soluble compounds evodiamine (EVO) and ruthenium (RUT), i.e., 58.36 ± 0.57% and 49.40 ± 0.57%, respectively, than those of 20% (v/v) PEG 400 Ringer's solution (RS-PEG) and 10% (v/v) ethanol Ringer's solution (RS-EtOH). In vivo microdialysis experiments confirmed that RS-ME captured EVO and RUT molecules around the dialysis membrane more efficiently and exhibited less spreading than RS-PEG and RS-EtOH. CONCLUSIONS: Owing to the nanosized droplets formed by lipid components in the RS-ME and the limited dispersion out of the dialysis membrane, we obtained good biocompatibility and reliable dialysis results, without affecting the tissue microenvironment. As a novel perfusate, RS-ME provides an easy and reliable approach to the microdialysis sampling of fat-soluble components.


Assuntos
Soluções Isotônicas/química , Microdiálise/métodos , Quinazolinas/química , Solução de Ringer/química , Rutênio/química , Animais , Portadores de Fármacos , Emulsões , Fibroblastos/metabolismo , Humanos , Lipídeos/química , Masculino , Membranas Artificiais , Nanopartículas/química , Ácidos Oleicos/química , Tamanho da Partícula , Perfusão , Polietilenoglicóis/química , Ratos Sprague-Dawley , Absorção Cutânea , Solubilidade , Tensoativos/química
11.
Biol Pharm Bull ; 40(11): 1996-2000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093350

RESUMO

In this study, the skin permeation of liposomes containing psoralen was investigated by in vivo skin microdialysis. Psoralen-loaded nano-sized liposomes were prepared with a mean size of 117.5 nm and a polydispersity index of 0.21, indicating the uniform dispersion of phosphatidylcholine vesicles in the liposomal solution. Based on in vivo microdialysis experiments, the drug concentration in local deep skin of rat increased rapidly and reached a peak concentration (Cmax) of 319.35±23.72 µg/mL at 180 min, and decreased slowly thereafter. The local area under the concentration-time curve (AUC)0-t was 3.81-fold higher than the compared aqueous suspension. The in vivo systemic pharmacokinetics were in agreement with the microdialysis results, in view of the Cmax and AUC0-t from liposomal group were both significantly higher (p<0.05) than the compared group. Liposome-associated transdermal psoralen delivery was significantly more effective than delivery via an aqueous suspension. The enhanced skin permeability may be associated with improved skin hydration, lipid exchange and fusion with the stratum corneum (SC), and changes in SC structure, promoting drug permeation into deep skin. After 10 h of treatment with the perfusate, the microstructure of the microdialysis probe exhibited no obvious differences with control probes. The skin surface and the tissue around the probe showed no swelling or inflammation. These findings indicated that liposomes effectively enhanced the skin deposition of psoralen and showed good biocompatibility with skin tissues; additionally, ethanol at a low concentration in ringer's solution is an alternative perfusate for in vivo skin microdialysis studies.


Assuntos
Monitoramento de Medicamentos/métodos , Ficusina/farmacologia , Microdiálise/métodos , Fármacos Fotossensibilizantes/farmacologia , Absorção Cutânea , Administração Cutânea , Animais , Área Sob a Curva , Excipientes , Lipossomos , Masculino , Nanopartículas , Ratos , Ratos Sprague-Dawley
12.
Drug Dev Ind Pharm ; 40(3): 301-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23350690

RESUMO

In this study, cinnamic acid-loaded transfersomes were prepared and dermal microdialysis sampling was used in Sprague-Dawley rats to compare the amount of drug released into the skin using transfersomes as transdermal carriers with that released on using conventional liposomes. The formulation of cinnamic acid-loaded transfersomes was optimized by a uniform design through in vitro transdermal permeation studies. Hydration time was confirmed as a significant factor influencing the entrapment efficiency of transfersomes, further affecting their transdermal flux in vitro. The fluxes of cinnamic acid from transfersomes were all higher than those from conventional liposomes, and the flux from the optimal transfersome formulation was 3.01-fold higher than that from the conventional liposomes (p < 0.05). An in vivo microdialysis sampling method revealed that the dermal drug concentrations from transfersomes applied on various skin regions were much lower than those required with conventional liposomes. After the administration of drug-containing transfersomes and liposomes on abdominal skin regions of rats for a period of 10 h, the Cmax of cinnamic acid from the compared liposomes was 3.21 ± 0.25 µg/mL and that from the transfersomes was merely 0.59 ± 0.02 µg/mL. The results suggest that transfersomes can be used as carriers to enhance the transdermal delivery of cinnamic acid, and that these vehicles may penetrate the skin in the complete form, given their significant deformability.


Assuntos
Cinamatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Microdiálise/métodos , Absorção Cutânea , Administração Cutânea , Animais , Química Farmacêutica , Cinamatos/farmacocinética , Lipossomos , Masculino , Ratos , Ratos Sprague-Dawley
13.
J Control Release ; 366: 712-731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219911

RESUMO

Conventional transnasal brain-targeted drug delivery strategies are limited by nasal cilia clearance and the nasal mucosal barrier. To address this challenge, we designed dissolving microneedles combined with nanocarriers for enhanced nose-to-brain drug delivery. To facilitate transnasal administration, a toothbrush-like microneedle patch was fabricated with hyaluronic acid-formed microneedles and tannic acid-crosslinked gelatin as the base, which completely dissolved in the nasal mucosa within seconds leaving only the base, thereby releasing the loaded cyclodextrin-based metal-organic frameworks (CD-MOFs) without affecting the nasal cilia and nasal microbial communities. As nanocarriers for high loading of huperzine A, these potassium-structured CD-MOFs, reinforced with stigmasterol and functionalized with lactoferrin, possessed improved physical stability and excellent biocompatibility, enabling efficient brain-targeted drug delivery. This delivery system substantially attenuated H2O2- and scopolamine-induced neurocyte damage. The efficacy of huperzine A on scopolamine- and D-galactose & AlCl3-induced memory deficits in rats was significantly improved, as evidenced by inhibiting acetylcholinesterase activity, alleviating oxidative stress damage in the brain, and improving learning function, meanwhile activating extracellular regulated protein kinases-cyclic AMP responsive element binding protein-brain derived neurotrophic factor pathway. Moreover, postsynaptic density protein PSD-95, which interacts with two important therapeutic targets Tau and ß-amyloid in Alzheimer's disease, was upregulated. This fruitful treatment was further shown to significantly ameliorate Tau hyperphosphorylation and decrease ß-amyloid by ways including modulating beta-site amyloid precursor protein cleaving enzyme 1 and a disintegrin and metalloproteinase 10. Collectively, such a newly developed strategy breaks the impasse for efficient drug delivery to the brain, and the potential therapeutic role of huperzine A for Alzheimer's disease is further illustrated.


Assuntos
Alcaloides , Doença de Alzheimer , Ciclodextrinas , Polifenóis , Sesquiterpenos , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Peróxido de Hidrogênio , Encéfalo , Mucosa Nasal , Peptídeos beta-Amiloides , Escopolamina
14.
Zhongguo Zhong Yao Za Zhi ; 38(17): 2782-7, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24380298

RESUMO

OBJECTIVE: To improve the stability and dissolution of realgar nano-particles by solid dispersion. METHOD: Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. RESULT: The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. CONCLUSION: The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.


Assuntos
Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/química , Nanopartículas/química , Portadores de Fármacos/química , Estabilidade de Medicamentos , Poloxâmero/química , Polietilenoglicóis/química , Solubilidade
15.
Drug Deliv Transl Res ; 13(12): 3014-3029, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37454030

RESUMO

Although the introduction of glycerosomes has enriched strategies for efficient transdermal drug delivery, the inclusion of cholesterol as a membrane stabilizer has limited their clinical application. The current study describes the development and optimization of a new type of glycerosome (S-glycerosome) that is formed in glycerol solution with ß-sitosterol as the stabilizer. Moreover, the transdermal permeation properties of lappaconitine (LA)-loaded S-glycerosomes and peppermint oil (PO)-mediated S-glycerosomes (PO-S-glycerosomes) are evaluated, and the lipid alterations in the stratum corneum are analyzed via lipidomics. The LA-loaded S-glycerosomes prepared by the preferred formulation from the uniform design have a mean size of 145.3 ± 7.81 nm and an encapsulation efficiency of 73.14 ± 0.35%. Moreover, the addition of PO positively impacts transdermal flux, peaking at 0.4% (w/v) PO. Tracing of the fluorescent probe P4 further revealed that PO-S-glycerosomes penetrate deeper into the skin than S-glycerosomes and conventional liposomes. Additionally, treatment with PO-S-glycerosomes alters the isoform type, number, and composition of sphingolipids, glycerophospholipids, glycerolipids, and fatty acids in the stratum corneum, with the most notable effect observed for ceramides, the main component of sphingolipids. Furthermore, the transdermal administration of LA-loaded PO-S-glycerosomes improved the treatment efficacy of xylene-induced inflammation in mice without skin irritation. Collectively, these findings demonstrate the feasibility of ß-sitosterol as a stabilizer in glycerosomes. Additionally, the inclusion of PO improves the transdermal permeation of S-glycerosomes, potentially by altering the stratum corneum lipids.


Assuntos
Fitosteróis , Absorção Cutânea , Camundongos , Animais , Administração Cutânea , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Pele/metabolismo , Lipossomos , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia
16.
Acta Pharm ; 72(1): 135-146, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651523

RESUMO

Triptolide exerts strong anti-inflammatory and immunomodulatory effects; however, its oral administration might be associated with side effects. Transdermal administration can improve the safety of triptolide. In this study, glycerosomes were prepared as the transdermal vehicle to enhance the transdermal delivery of triptolide. With entrapment efficiency and drug loading as dependent variables, the glycerosome formulation was optimized using an orthogonal experimental design. Phospholipid-to-cholesterol and phospholipid-to-triptolide mass ratios of 30:1 and 5:1, respectively and a glycerol concentration of 20 % (V/V) were used in the optimization. The glycerosomes prepared with the optimized formulation showed good stability, with an average particle size of 153.10 ± 2.69 nm, a zeta potential of -45.73 ± 0.60 mV and an entrapment greater than 75 %. Glycerosomes significantly increased the transdermal delivery of triptolide compared to conventional liposomes. As efficient carriers for the transdermal delivery of drugs, glycerosomes can potentially be used as an alternative to oral triptolide administration.


Assuntos
Portadores de Fármacos , Absorção Cutânea , Administração Cutânea , Projetos de Pesquisa , Lipossomos/metabolismo , Lipossomos/farmacologia , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Tamanho da Partícula , Sistemas de Liberação de Medicamentos , Pele
17.
J Pharm Sci ; 111(6): 1785-1797, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34418454

RESUMO

We designed cholesterol- and phospholipid-free multilamellar niosomes (MLNs) structured by glyceryl monooleate (GMO) and poloxamer 407 (F127), and evaluated their capacity for transdermal drug delivery. The optimized MLNs had a mean size of 97.88 ± 63.25 nm and an encapsulation efficiency of 82.68% ± 2.14%. The MLNs exhibited a remarkable sustained cargo release, and improved the permeation of the stratum corneum. Compared with the tincture, lower transdermal flux but higher skin deposition of aconitine in vitro were achieved in the MLN group (p < 0.05). Additionally, both water-soluble rhodamine B- and liposoluble coumarin 6-labeled MLNs were found to penetrate deeply into the skin through the hair follicles and could be internalized by fibroblasts Notably, the MLNs possessed greater wettability, and the study focused on delivery to deeper hair follicles and up to the outer hair sheath, which showed advantages for treating diseases of hair follicles, and was potentially superior to the hydrophobic PLGA nanoparticles (diameter: 637.87 ± 22.77 nm) which mainly accumulated in superficial hair follicles. Hair follicles were therefore demonstrated to be an important way to enhance skin permeability, and MLNs are a promising alternative for topical and transdermal drug delivery.


Assuntos
Lipossomos , Nanopartículas , Administração Cutânea , Animais , Colesterol/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Folículo Piloso , Lipossomos/química , Nanopartículas/química , Fosfolipídeos/química , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea
18.
Zhongguo Zhong Yao Za Zhi ; 36(11): 1431-5, 2011 Jun.
Artigo em Zh | MEDLINE | ID: mdl-22779171

RESUMO

OBJECTIVE: To prepare vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles (VCR-PBCA-NPs) and to investigate the in vitro release charactersitics. METHOD: VCR-PBCA-NPs were prepared by emulsion polymerization method, and characterized for morphology, particle size, drug encapsulation efficiency and loading efficiency. The formulation was optimized using central composite design and response surface methodology. In vitro release study of VCR-PBCA-NPs was performed by dialysis technique. Model fitting was used to determine the kinetics and to discuss the mechanism. RESULT: The nanoparticles were spherical and uniform with a mean diameter of (98.9 +/- 3.05) nm. The drug encapsulation efficiency and loading efficiency were (55.23 +/- 0.96)% and (7.87 +/- 0.11)%, respectively. In vitro release results showed that 63.66% of VCR was released from VCR-PBCA-NPs in 4 h, and the Weibull model fitted VCR release pattern best. CONCLUSION: The VCR-PBCA-NPs prepared in this study showed sustained release compared with VCR solution.


Assuntos
Química Farmacêutica/métodos , Cianoacrilatos/análise , Portadores de Fármacos/química , Embucrilato/química , Nanopartículas/química , Vincristina/química , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Emulsões , Técnicas In Vitro , Tamanho da Partícula
19.
Zhong Yao Cai ; 34(9): 1392-5, 2011 Sep.
Artigo em Zh | MEDLINE | ID: mdl-22260008

RESUMO

OBJECTIVE: To establish a HPLC method for measuring tashinone II(A) concentration in rabbit plasma and study the pharmacokinetics of tashinone II(A) -loaded polylactic acid nanoparticles and tashinone II(A) injection in rabbits. METHODS: A single dose of TS-PLA-NP and TS II(A) injection was administered to 8 healthy rabbits via the ear-edge vein, at the set time withdrew the blood and prepared. The concentrations of tashinone II(A) in plasma were measured by HPLC with gemfibrozil as the internal standard. The pharmacokinetic parameters of TS-PLA-NP and tashinone II(A) injection were calculated by program DAS2.0. RESULTS: The average retention times of gemfibrozil and tashinone II(A) were 10.5 and 14.5 min, respectively. The half-life was prolonged from 2. 573 h of free tashinone II(A) to 4. 117 h and MRT(0-infinity) from 2.585 h to 6.033 h. The max concentration of tashinone II(A) was reduced from 0.21 to 0.134 mg/L. CONCLUSION: The method for the pharmacokinetic research of tshinone II A in rabbit plasma is accuracy, rapid and sensitive. TS-PLA-NP shows significant characteristic of delayed-release.


Assuntos
Abietanos/farmacocinética , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/patologia , Fígado/metabolismo , Nanopartículas/química , Polímeros/química , Abietanos/administração & dosagem , Abietanos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Área Sob a Curva , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Injeções Intravenosas , Nanopartículas/administração & dosagem , Transplante de Neoplasias , Tamanho da Partícula , Polímeros/administração & dosagem , Coelhos , Fatores de Tempo , Distribuição Tecidual
20.
Int J Biol Macromol ; 168: 526-536, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33310104

RESUMO

Phototherapy holds promise in cancer treatment for its prominent antitumor efficacy and low systematic toxicity compared with traditional chemotherapy. However, the higher risk of tumor metastasis caused by the severe hypoxic state during phototherapy is a threat in practical use. Here, in order to tackle this challenge, we developed a delivery system via loading the photosensitizer indocyanine green (ICG) into the low molecular weight heparin (LMWH) modified liposomes (LMWH-ICG-Lip) to realize the synergistic effects between photosensitizer and drug vehicle, achieving better phototherapeutic efficacy and meanwhile alleviating the potential risk of tumor metastasis caused by phototherapy. In this system, besides elongating the photosensitizers' circulation time and enhancing their accumulating efficacy to tumor tissues, LMWH itself also exhibited anti-metastasis efficacy via inhibiting adhesion of platelets to tumor cells and decreasing migration and invasion capability of tumor cells. In vivo efficacy evaluation was conducted on orthotopic 4T1 breast cancer model, and the system of LMWH-ICG-Lip could alleviate metastasis potential of residual tumor cells after irradiation, and elicit optimistic antitumor and anti-metastasis efficacy for phototherapy.


Assuntos
Neoplasias da Mama/terapia , Heparina de Baixo Peso Molecular/química , Verde de Indocianina/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Lipossomos , Camundongos , Metástase Neoplásica , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA