Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Control Release ; 225: 252-68, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26826303

RESUMO

Nanovehicles are promising delivery systems for various vaccines. Nevertheless, different biophysicochemical properties of nanoparticles (NPs), dominating their in vitro and in vivo performances for vaccination, remain unclear. We attempted to elucidate the effects of NPs and their pH-sensitivity on in vitro and in vivo efficacy of resulting prophylactic nanovaccines containing a contraceptive peptide (FSHR). To this end, pH-responsive and non-responsive nanovaccines were produced using acetalated ß-cyclodextrin (Ac-bCD) and poly(lactic-co-glycolic acid) (PLGA), respectively. Meanwhile, FSHR derived from an epitope of the follicle-stimulating hormone receptor was used as the model antigen. FSHR-containing Ac-bCD and PLGA NPs were successfully prepared by a nanoemulsion technique, leading to well-shaped nanovaccines with high loading efficiency. The pH-sensitivity of Ac-bCD and PLGA nanovaccines was examined by in vitro hydrolysis and antigen release studies. Nanovaccines could be effectively engulfed by dendritic cells (DCs) via endocytosis in both dose and time dependent manners, and their intracellular trafficking was closely related to the pH-sensitivity of the carrier materials. Furthermore, nanovaccines could induce the secretion of inflammatory cytokines by DCs and T cells co-cultured with the stimulated DCs. In vivo evaluations demonstrated that nanovaccines were more potent than that based on the complete Freund's adjuvant, with respect to inducing anti-FSHR antibody, reducing the sperm count, inhibiting the sperm motility, and increasing the teratosperm rate. Immunization of male mice with nanovaccines notably decreased the parturition incidence of the mated females. Consequently, both in vitro and in vivo activities of FSHR could be considerably augmented by NPs. More importantly, our studies indicated that the pH-responsive nanovaccine was not superior over the non-responsive counterpart for the examined peptide antigen.


Assuntos
Anticoncepcionais/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Receptores do FSH/imunologia , Vacinas/administração & dosagem , Animais , Anticoncepcionais/química , Anticoncepcionais/farmacologia , Citocinas/imunologia , Células Dendríticas/imunologia , Liberação Controlada de Fármacos , Feminino , Fertilidade/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrólise , Imunoglobulina G/sangue , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores do FSH/química , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinas/química , Vacinas/farmacologia , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/química
2.
ACS Nano ; 10(11): 9957-9973, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27736084

RESUMO

Currently, there is still unmet demand for effective and safe hemostats to control abnormal bleeding in different conditions. With the aim to develop affordable, safe, effective, easily stored, and low-cost hemostats, we developed a series of positively charged nanoparticles by a facile one-pot assembly approach. In this strategy, nanoparticles were formed by cholic-acid-mediated self-assembly of polyethylenimine (PEI). Regardless of different structures of cholic acids and PEIs, well-defined nanoparticles could be successfully formed. The assembly process was dominated by multiple interactions between cholic acid and PEI, including electrostatic, hydrogen bonding, and hydrophobic forces. In vitro studies showed that assembled nanoparticles effectively induced aggregation and activation of platelets. Local application of aqueous solution containing nanoparticles assembled by different cholic acids and PEIs significantly reduced bleeding times in different rodent models including tail transection in mice as well as liver bleeding and femoral artery bleeding in rats or rabbits. Moreover, intravenous (i.v.) injection of this type of positively charged nanoparticles notably prevented bleeding in the femoral artery in rats by targeting the injured site via opsonization of nanoparticles with fibrinogen. By contrast, a control negatively charged nanoparticle showed no hemostatic activity after i.v. delivery. Also, preliminary evaluations in rats revealed a good safety profile after i.v. administration of assembled nanoparticles at a dose 4-fold higher than that used for hemostasis. These results demonstrated that cholic acid/PEI-assembled positive nanoparticles may function as cost-effective and locally applicable or injectable nanohemostats for hemorrhage control in the civilian setting and on the battlefield.


Assuntos
Hemorragia/tratamento farmacológico , Hemostáticos/química , Nanopartículas , Polietilenoimina , Animais , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Coelhos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA