Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142217

RESUMO

Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.


Assuntos
Magnetossomos , Magnetospirillum , Proteínas de Bactérias/química , FMN Redutase/metabolismo , Óxido Ferroso-Férrico/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Lipídeos/análise , Lipossomos/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Proteínas de Membrana/metabolismo , NAD/metabolismo , Ubiquitinas/metabolismo
2.
Colloids Surf B Biointerfaces ; 101: 361-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010042

RESUMO

Human blood outgrowth endothelial cells (HBOECs)-specific binding peptide, TPSLEQRTVYAK (TPS), was proposed to be applied on autologous cell therapy for treating cardiovascular diseases. Hydrophobins, as a family of self-assembly proteins originated from fungi, have demonstrated unique characteristics to modulate surface properties of other materials coated with these amphiphilic proteins in previous studies. In this report, a fusion protein which was composed of class I hydrophobin HGFI originated from Grifola frondosa and functional peptide TPS was expressed by Pichia pastoris expression system. Then, we purified this fusion protein by ultrafiltration and reverse-phase high performance liquid chromatography. Water contact angle, X-ray photoelectron spectroscopy measurements indicated that the surface properties of hydrophobin were greatly preserved by this fusion protein while comparing with wild HGFI. Cell binding assay showed that this fusion protein demonstrated specific binding property to HBOECs while coating on biodegradable poly(ε-caprolactone) (PCL) grafts in the presence of fetal bovine serum, whereas HGFI-coated PCL non-selectively enhanced all types of cells attachments. Methylthiazol tetrazolium assay was employed to verify the cytocompatibility of this fusion protein-based material. This work presented a new perspective to apply hydrophobin in tissue engineering and regenerative medicine and provided an alternative approach to study endothelial progenitor cells.


Assuntos
Separação Celular/métodos , Células Endoteliais/química , Oligopeptídeos/química , Peptídeos/química , Poliésteres/química , Proteínas Recombinantes de Fusão/química , Cromatografia Líquida de Alta Pressão , Vetores Genéticos , Grifola/química , Indicadores e Reagentes , Espectroscopia Fotoeletrônica , Pichia/química , Pichia/genética , Alicerces Teciduais
3.
Colloids Surf B Biointerfaces ; 85(1): 32-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21123036

RESUMO

Hydrophilicity improvement and bioactive surface design of poly(ɛ-caprolactone) (PCL) grafts are of key importance for their application in tissue engineering. Herein, we develop a convenient approach for achieving stable hydrophilic surfaces by modifying electrospun PCL grafts with a class II hydrophobin (HFBI) coating. Static water contact angles (WCA) demonstrated the conversion of the PCL grafts from hydrophobic to hydrophilic after the introduction of amphiphilic HFBI. ATR-FTIR and XPS confirmed the presence of self-assembled HFBI films on the surface of the PCL nanofibers. The biocompatibility of the HFBI-modified PCL grafts was evaluated by cell proliferation in vitro, and by arteriovenous shunt (AV shunt) experiments ex vivo. Anti-CD31 antibody, which is specific for endothelial cells (ECs), was subsequently immobilized on the HFBI-coated PCL scaffolds through protein-protein interactions. This bioactive PCL graft was found to promote the attachment and retention of endothelial cells. These results suggest that this stepwise strategy for introducing cell-specific binding molecules into PCL scaffolds may have potential for development of vascular grafts that can endothelialize rapidly in vivo.


Assuntos
Antibacterianos/química , Caproatos/química , Adesão Celular/efeitos dos fármacos , Células Endoteliais/citologia , Lactonas/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Polímeros/química , Polímeros/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA