Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 368(9)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34036336

RESUMO

The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled 'VOLATILE-Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks'.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Biocombustíveis , Biomassa , Biopolímeros , Reatores Biológicos
2.
Chemosphere ; 259: 127472, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32599378

RESUMO

In line with the Circular Economy approach, the production of polyhydroxyalkanoate (PHA) with organic waste as the feedstock may a biotechnological application to reduce waste and recover high-value materials. The potential contaminants that could transfer from bio-waste to a PHA include inorganic elements, such as heavy metals. Hence, the total content and migratability of certain elements were evaluated in several PHA samples produced from different origins and following different methods. The total content of certain elements in PHA ranged between 0.0001 (Be) and 49,500 mg kg-1 (Na). The concentrations of some alkaline (Na and K) and alkaline earth (Ca and Mg) metals were highest, which are of little environmental concern. The feedstock type and PHA stabilisation and extraction procedures affected the element contents. Several sets of experiments were conducted to evaluate the migration of elements from the PHA samples under different storage times, temperatures, and pH levels. The total contents of some heavy metals (As, Cd, Fe, Hg, Ni, Pb, and Zn) in PHA produced from fruit waste or crops (commercial PHA) were lower than those in the PHA samples produced from the mixture of the organic fraction of municipal waste and sludge from wastewater treatment. Both the PHA obtained by extraction from wet biomass (acid storage) with aqueous phase extraction reagents and commercial PHA were below the migration limits stipulated by the current Toy Safety Directive and by Commission Regulation (EU) October 2011 on plastic materials and articles intended to come into contact with food under frozen and refrigerated conditions.


Assuntos
Plásticos Biodegradáveis/análise , Plásticos/análise , Resíduos/análise , Biomassa , Biotecnologia , Alimentos , Metais Pesados/análise , Polímeros , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA