RESUMO
Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.
Assuntos
Materiais Biocompatíveis , Substância Negra , Animais , Técnicas de Cocultura , Corpo Estriado/metabolismo , Dopamina , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
BACKGROUND: Alzheimers disease is accompanied by cell death of cholinergic neurons, resulting in cognitive impairment and memory loss. Nerve growth factor (NGF) is the most potent protein to support survival of cholinergic neurons. NEW METHOD: Organotypic brain slices of the basal nucleus of Meynert (nBM) are a valuable tool to study cell death of axotomized cholinergic neurons, as well as protective effects of NGF added into the medium. The aim of the present study is to use collagen scaffolds crosslinked with polyethyleneglycole and load with NGF to target delivery of NGF to organotypic nBM brain slices. RESULTS: Collagen scaffolds (visualized by incorporating AlexaFluor 488 antibodies) slowly degraded when applied onto organotypic brain slices within 2 weeks in culture. GFAP reactive astrocytes and Iba1+ microglia became visible around the collagen scaffolds 7days after incubation, showing reactive gliosis. Cholinergic neurons of the nBM survived (201±21, n=8) when incubated with 100ng/ml NGF in the medium compared to NGF-free medium (69±12, n=7). Collagen scaffolds loaded with NGF (1ng/2µl scaffold) significantly rescued cholinergic cell death in the nBM brain slices (175±12, n=10), which was counteracted by an anti-NGF antibody (77±5, n=5). COMPARISON WITH EXISTING METHODS: The combination of coronal brain slices with biomaterial is a novel and potent tool to selectively study neuroprotective effects. CONCLUSIONS: Collagen scaffolds loaded with low amounts of a protein/drug of interest can be easily applied directly onto organotypic brain slices, allowing slow targeted release of a protective molecule. Such an approach is highly useful to optimize CollScaff for further in vivo applications.