Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Genet ; 55(1): 28-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021403

RESUMO

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Adolescente , Criança , Sequência Conservada , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Domínios Proteicos , Síndrome , Termodinâmica
2.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27667800

RESUMO

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Deleção Cromossômica , Cromossomos Humanos Par 16 , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Masculino , Fenótipo , Proteínas Repressoras/genética
3.
Am J Med Genet A ; 170(3): 670-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842493

RESUMO

We report on 19 individuals with a recurrent de novo c.607C>T mutation in PACS1. This specific mutation gives rise to a recognizable intellectual disability syndrome. There is a distinctive facial appearance (19/19), characterized by full and arched eyebrows, hypertelorism with downslanting palpebral fissures, long eye lashes, ptosis, low set and simple ears, bulbous nasal tip, wide mouth with downturned corners and a thin upper lip with an unusual "wavy" profile, flat philtrum, and diastema of the teeth. Intellectual disability, ranging from mild to moderate, was present in all. Hypotonia is common in infancy (8/19). Seizures are frequent (12/19) and respond well to anticonvulsive medication. Structural malformations are common, including heart (10/19), brain (12/16), eye (10/19), kidney (3/19), and cryptorchidism (6/12 males). Feeding dysfunction is presenting in infancy with failure to thrive (5/19), gastroesophageal reflux (6/19), and gastrostomy tube placement (4/19). There is persistence of oral motor dysfunction. We provide suggestions for clinical work-up and management and hope that the present study will facilitate clinical recognition of further cases.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Mutação Puntual , Convulsões/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/patologia , Adolescente , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Fácies , Insuficiência de Crescimento/diagnóstico , Insuficiência de Crescimento/tratamento farmacológico , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Feminino , Expressão Gênica , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/tratamento farmacológico , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Convulsões/patologia , Índice de Gravidade de Doença , Síndrome , Adulto Jovem
4.
J Med Genet ; 49(7): 437-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22717651

RESUMO

BACKGROUND: Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal disorder characterised by hypoplastic or absent clavicles, increased head circumference, large fontanels, dental anomalies and short stature. Although CCD is usually caused by mutations leading to haploinsufficiency of RUNX2, the underlying genetic cause remains unresolved in about 25% of cases. METHODS: Array comparative genomic hybridisation was performed to detect copy number variations (CNVs). Identified CNVs were characterised by quantitative PCR and sequencing analyses. The effect of candidate genes on mineralisation was evaluated using viral overexpression in chicken cells. RESULTS: In 2 out of 16 cases, the authors identified microduplications upstream of MSX2 on chromosome 5q35.2. One of the unrelated affected individuals presented with a phenocopy of CCD. In addition to a classical CCD phenotype, the other subject had a complex synpolydactyly of the hands and postaxial polydactyly of the feet which have so far never been reported in association with CCD or CNVs on 5q35.2. The duplications overlap in an ∼219 kb region that contains several highly conserved non-coding elements which are likely to be involved in MSX2 gene regulation. Functional analyses demonstrated that the inhibitory effect of Msx2 overexpression on mineralisation cannot be ameliorated by forced Runx2 expression. CONCLUSIONS: These results indicate that CNVs in non-coding regions can cause developmental defects, and that the resulting phenotype can be distinct from those caused by point mutations within the corresponding gene. Taken together, these findings reveal an additional mechanism for the pathogenesis of CCD, particularly with regard to the regulation of MSX2.


Assuntos
Duplicação Cromossômica , Displasia Cleidocraniana/genética , Proteínas de Homeodomínio/genética , Fenótipo , Animais , Células Cultivadas , Galinhas , Criança , Pré-Escolar , Cromossomos Humanos Par 5/genética , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Variações do Número de Cópias de DNA , Feminino , Regulação da Expressão Gênica , Haploinsuficiência , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA