Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 179: 113660, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460946

RESUMO

Plastics accumulate in the environment and the Mediterranean Sea is one of the most polluted sea in the world. The plastic surface is rapidly colonized by microorganisms, forming the plastisphere. Our unique sampling supplied 107 plastic pieces from 22 geographical sites from four aquatic ecosystems (river, estuary, harbor and inshore) in the south of France in order to better understand the parameters which influence biofilm composition. In parallel, 48 enrichment cultures were performed to investigate the presence of plastic degrading-bacteria in the plastisphere. In this context, we showed that the most important drivers of microbial community structure were the sampling site followed by the polymer chemical composition. The study of pathogenic genus distribution highlighted that only 11% of our plastic samples contained higher proportions of Vibrio compared to the natural environment. Finally, results of the enrichment cultures showed a selection of hydrocarbon-degrading microorganisms suggesting their potential role in the plastic degradation.


Assuntos
Microbiota , Rios , Bactérias , Biofilmes , Plásticos
2.
Environ Pollut ; 286: 117439, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438479

RESUMO

This study investigated the biogeography, the presence and diversity of potentially harmful taxa harbored, and potential interactions between and within bacterial and eukaryotic domains of life on plastic debris in the Mediterranean. Using a combination of high-throughput DNA sequencing (HTS), Causal Network Analysis, and Scanning Electron Microscopy (SEM), we show regional differences and gradients in the Mediterranean microbial communities associated with marine litter, positive causal effects between microbes including between and within domains of life, and how these might impact the marine ecosystems surrounding them. Adjacent seas within the Mediterranean region showed a gradient in the microbial communities on plastic with non-overlapping endpoints (Adriatic and Ligurian Seas). The largest predicted inter-domain effects included positive effects of a novel red-algal Plastisphere member on its potential microbiome community. Freshwater and marine samples housed a diversity of fungi including some related to disease-causing microbes. Algal species related to those responsible for Harmful Blooms (HABs) were also observed on plastic pieces including members of genera not previously reported on Plastic Marine Debris (PMD).


Assuntos
Microbiota , Plásticos , Bactérias , Eucariotos , Fungos
3.
Environ Pollut ; 242(Pt A): 614-625, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30014939

RESUMO

Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ±â€¯4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.


Assuntos
Bactérias , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Baías/química , Ecossistema , Polietileno/análise , Polímeros/análise , Polipropilenos/análise , Poliestirenos/análise , Água do Mar/química , Água do Mar/microbiologia , Microbiologia da Água
4.
Environ Pollut ; 215: 223-233, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209243

RESUMO

Pollution of the oceans by microplastics (<5 mm) represents a major environmental problem. To date, a limited number of studies have investigated the level of contamination of marine organisms collected in situ. For extraction and characterization of microplastics in biological samples, the crucial step is the identification of solvent(s) or chemical(s) that efficiently dissolve organic matter without degrading plastic polymers for their identification in a time and cost effective way. Most published papers, as well as OSPAR recommendations for the development of a common monitoring protocol for plastic particles in fish and shellfish at the European level, use protocols containing nitric acid to digest the biological tissues, despite reports of polyamide degradation with this chemical. In the present study, six existing approaches were tested and their effects were compared on up to 15 different plastic polymers, as well as their efficiency in digesting biological matrices. Plastic integrity was evaluated through microscopic inspection, weighing, pyrolysis coupled with gas chromatography and mass spectrometry, and Raman spectrometry before and after digestion. Tissues from mussels, crabs and fish were digested before being filtered on glass fibre filters. Digestion efficiency was evaluated through microscopical inspection of the filters and determination of the relative removal of organic matter content after digestion. Five out of the six tested protocols led to significant degradation of plastic particles and/or insufficient tissue digestion. The protocol using a KOH 10% solution and incubation at 60 °C during a 24 h period led to an efficient digestion of biological tissues with no significant degradation on all tested polymers, except for cellulose acetate. This protocol appeared to be the best compromise for extraction and later identification of microplastics in biological samples and should be implemented in further monitoring studies to ensure relevance and comparison of environmental and seafood product quality studies.


Assuntos
Organismos Aquáticos/metabolismo , Monitoramento Ambiental/métodos , Plásticos/análise , Plásticos/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Benchmarking
5.
Environ Pollut ; 216: 724-737, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27372385

RESUMO

The effects of polystyrene microbeads (micro-PS; mix of 2 and 6 µm; final concentration: 32 µg L(-1)) alone or in combination with fluoranthene (30 µg L(-1)) on marine mussels Mytilus spp. were investigated after 7 days of exposure and 7 days of depuration under controlled laboratory conditions. Overall, fluoranthene was mostly associated to algae Chaetoceros muelleri (partition coefficient Log Kp = 4.8) used as a food source for mussels during the experiment. When micro-PS were added in the system, a fraction of FLU transferred from the algae to the microbeads as suggested by the higher partition coefficient of micro-PS (Log Kp = 6.6), which confirmed a high affinity of fluoranthene for polystyrene microparticles. However, this did not lead to a modification of fluoranthene bioaccumulation in exposed individuals, suggesting that micro-PS had a minor role in transferring fluoranthene to mussels tissues in comparison with waterborne and foodborne exposures. After depuration, a higher fluoranthene concentration was detected in mussels exposed to micro-PS and fluoranthene, as compared to mussels exposed to fluoranthene alone. This may be related to direct effect of micro-PS on detoxification mechanisms, as suggested by a down regulation of a P-glycoprotein involved in pollutant excretion, but other factors such as an impairment of the filtration activity or presence of remaining beads in the gut cannot be excluded. Micro-PS alone led to an increase in hemocyte mortality and triggered substantial modulation of cellular oxidative balance: increase in reactive oxygen species production in hemocytes and enhancement of anti-oxidant and glutathione-related enzymes in mussel tissues. Highest histopathological damages and levels of anti-oxidant markers were observed in mussels exposed to micro-PS together with fluoranthene. Overall these results suggest that under the experimental conditions of our study micro-PS led to direct toxic effects at tissue, cellular and molecular levels, and modulated fluoranthene kinetics and toxicity in marine mussels.


Assuntos
Fluorenos/toxicidade , Mytilus/efeitos dos fármacos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Fluorenos/metabolismo , Glutationa/metabolismo , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Microesferas , Mytilus/metabolismo , Poliestirenos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
6.
Mar Pollut Bull ; 98(1-2): 179-87, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26456303

RESUMO

This study assessed the capability of Crangon crangon (L.), an ecologically and commercially important crustacean, of consuming plastics as an opportunistic feeder. We therefore determined the microplastic content of shrimp in shallow water habitats of the Channel area and Southern part of the North Sea. Synthetic fibers ranging from 200µm up to 1000µm size were detected in 63% of the assessed shrimp and an average value of 0.68±0.55microplastics/g w. w. (1.23±0.99microplastics/shrimp) was obtained for shrimp in the sampled area. The assessment revealed no spatial patterns in plastic ingestion, but temporal differences were reported. The microplastic uptake was significantly higher in October compared to March. The results suggest that microplastics >20µm are not able to translocate into the tissues.


Assuntos
Crangonidae , Exposição Ambiental/análise , Plásticos/análise , Animais , Mar do Norte , Plásticos/farmacocinética , Estações do Ano , Frutos do Mar , Distribuição Tecidual , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética
7.
Environ Sci Pollut Res Int ; 21(24): 13804-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24652572

RESUMO

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades leading to high concentrations in sediments of contaminated areas. To evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal at 5 days post fertilisation until they became reproducing adults, to diets spiked with three PAH fractions at three environmentally relevant concentrations with the medium concentration being in the range of 4.6-6.7 µg g(-1) for total quantified PAHs including the 16 US-EPA indicator PAHs and alkylated derivatives. The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions, a heavy fuel (HO) and a light crude oil (LO). Fish growth was inhibited by all PAH fractions and the effects were sex specific: as determined with 9-month-old adults, exposure to the highest PY inhibited growth of females; exposure to the highest HO and LO inhibited growth of males; also, the highest HO dramatically reduced survival. Morphological analysis indicated a disruption of jaw growth in larvae and malformations in adults. Intestinal and pancreatic enzyme activities were abnormal in 2-month-old exposed fish. These effects may contribute to poor growth. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish recruitment.


Assuntos
Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Ração Animal/análise , Animais , Monitoramento Ambiental , Feminino , Masculino , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA