Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639208

RESUMO

Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme's overall stability by 2 kcal mol-1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Heme/química , Mutação , Peroxidase/química , Peroxidase/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Corantes/química , Corantes/metabolismo , Estabilidade Enzimática , Heme/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Peroxidase/genética , Conformação Proteica
2.
Biochemistry ; 44(4): 1234-42, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15667217

RESUMO

Osteocalcin is a small (45 amino acids) secreted protein found to accumulate in bone and dentin of many organisms by interacting with calcium and hydroxyapatite, through the presence of three gamma-carboxylated residues. In this work, we describe the first X-ray crystal structure for a nonmammalian osteocalcin, obtained at 1.4 A resolution, purified from the marine teleost fish Argyrosomus regius. The three-dimensional fit between the A. regius structure and that of the only other known X-ray structure, the porcine osteocalcin, revealed a superposition of the Calpha atoms of their metal chelating residues, Gla and Asp, showing that their spatial distribution is consistent with the interatomic distances of calcium cations in the hydroxyapatite crystals. In both structures, the protein forms a tight globular arrangement of their three alpha-helices while the remaining residues, at N- and C-terminal regions, have essentially no secondary structure characteristics. This study revealed the presence of a fourth gamma-carboxylation at Glu(25), not previously detected in the structure of the porcine osteocalcin or in any other of the sequentially characterized mammalian osteocalcins (human, cow, and rat). A confirmation of the fourth Gla residue in A. regius osteocalcin was achieved via LC-MS analysis. These four doubly charged residues are, together with Asp(24), concentrated in a common surface region located on the same side of the molecule. This further suggests that the known high affinity of osteocalcin for bone mineral may be derived from the clustering of calcium binding sites on this surface of the molecules.


Assuntos
Ácido 1-Carboxiglutâmico/química , Ácido 1-Carboxiglutâmico/fisiologia , Osteocalcina/química , Osteocalcina/fisiologia , Perciformes , Sequência de Aminoácidos , Animais , Cálcio/química , Bovinos , Cristalografia por Raios X , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Ratos , Eletricidade Estática , Propriedades de Superfície , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA