Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(23): 16827-16838, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23580648

RESUMO

The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nM) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Subunidades Proteicas/química , Ruminococcus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulose/química , Celulose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Coesinas
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 522-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531486

RESUMO

The anaerobic, thermophilic, cellulosome-producing bacterium Clostridium thermocellum relies on a variety of carbohydrate-active enzymes in order to efficiently break down complex carbohydrates into utilizable simple sugars. The regulation mechanism of the cellulosomal genes was unknown until recently, when genomic analysis revealed a set of putative operons in C. thermocellum that encode σI factors (i.e. alternative σ factors that control specialized regulon activation) and their cognate anti-σI factor (RsgI). These putative anti-σI-factor proteins have modules that are believed to be carbohydrate sensors. Three of these modules were crystallized and their three-dimensional structures were solved. The structures show a high overall degree of sequence and structural similarity to the cellulosomal family 3 carbohydrate-binding modules (CBM3s). The structures of the three carbohydrate sensors (RsgI-CBM3s) and a reference CBM3 are compared in the context of the structural determinants for the specificity of cellulose and complex carbohydrate binding. Fine structural variations among the RsgI-CBM3s appear to result in alternative substrate preferences for each of the sensors.


Assuntos
Celulose/química , Clostridium thermocellum/química , Proteínas Repressoras/química , Fator sigma/química , Transdução de Sinais , Sequência de Aminoácidos , Biomassa , Celulose/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Fator sigma/genética , Fator sigma/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 819-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751667

RESUMO

The crystal structure of the family 3b carbohydrate-binding module (CBM3b) of the cellulosomal multimodular hydrolytic enzyme cellobiohydrolase 9A (Cbh9A) from Clostridium thermocellum has been determined. Cbh9A CBM3b crystallized in space group P4(1) with four molecules in the asymmetric unit and diffracted to a resolution of 2.20 Šusing synchrotron radiation. The structure was determined by molecular replacement using C. thermocellum Cel9V CBM3b' (PDB entry 2wnx) as a model. The C. thermocellum Cbh9A CBM3b molecule forms a nine-stranded antiparallel ß-sandwich similar to other family 3 carbohydrate-binding modules (CBMs). It has a short planar array of two aromatic residues that are assumed to bind cellulose, yet it lacks the ability to bind cellulose. The molecule contains a shallow groove of unknown function that characterizes other family 3 CBMs with high sequence homology. In addition, it contains a calcium-binding site formed by a group of amino-acid residues that are highly conserved in similar structures. After determination of the three-dimensional structure of Cbh9A CBM3b, the site-specific N126W mutant was produced with the intention of enhancing the cellulose-binding ability of the CBM. Cbh9A CBM3b(N126W) crystallized in space group P4(1)2(1)2, with one molecule in the asymmetric unit. The crystals diffracted to 1.04 Šresolution using synchrotron radiation. The structure of Cbh9A CBM3b(N126W) revealed incorporation of the mutated Trp126 into the putative cellulose-binding strip of residues. Cellulose-binding experiments demonstrated the ability of Cbh9A CBM3b(N126W) to bind cellulose owing to the mutation. This is the first report of the engineered conversion of a non-cellulose-binding CBM3 to a binding CBM3 by site-directed mutagenesis. The three-dimensional structure of Cbh9A CBM3b(N126W) provided a structural correlation with cellulose-binding ability, revealing a longer planar array of definitive cellulose-binding residues.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 33-43, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20057047

RESUMO

Family 3 carbohydrate-binding modules (CBM3s) are associated with both cellulosomal scaffoldins and family 9 glycoside hydrolases (GH9s), which are multi-modular enzymes that act on cellulosic substrates. CBM3s bind cellulose. X-ray crystal structures of these modules have established an accepted cellulose-binding mechanism based on stacking interactions between the sugar rings of cellulose and a planar array of aromatic residues located on the CBM3 surface. These planar-strip residues are generally highly conserved, although some CBM3 sequences lack one or more of these residues. In particular, CBM3b' from Clostridium thermocellum Cel9V exhibits such sequence changes and fails to bind cellulosic substrates. A crystallographic investigation of CBM3b' has been initiated in order to understand the structural reason(s) for this inability. CBM3b' crystallized in space group C222(1) (diffraction was obtained to 2.0 A resolution in-house) with three independent molecules in the asymmetric unit and in space group P4(1)2(1)2 (diffraction was obtained to 1.79 A resolution in-house and to 1.30 A resolution at a synchrotron) with one molecule in the asymmetric unit. The molecular structure of Cel9V CBM3b' revealed that in addition to the loss of several cellulose-binding residues in the planar strip, changes in the backbone create a surface 'hump' which could interfere with the formation of cellulose-protein surface interactions and thus prevent binding to crystalline cellulose.


Assuntos
Aminoácidos Aromáticos/química , Proteínas de Bactérias/metabolismo , Celulose/química , Clostridium thermocellum/enzimologia , Glicosídeo Hidrolases/química , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias/química , Carboidratos/química , Celulose/metabolismo , Cristalização , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Proteins ; 77(3): 699-709, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544570

RESUMO

The cellulosome is an intriguing multienzyme complex found in cellulolytic bacteria that plays a key role in the degradation of plant cell-wall polysaccharides. In Ruminococcus flavefaciens, a predominant fiber-degrading bacterium found in ruminants, the cellulosome is anchored to the bacterial cell wall through a relatively short ScaE scaffoldin. Determination of the crystal structure of the lone type-III ScaE cohesin from R. flavefaciens (Rf-CohE) was initiated as a part of a structural effort to define cellulosome assembly. The structure was determined at 1.95 A resolution by single-wavelength anomalous diffraction. This is the first detailed description of a crystal structure for a type-III cohesin, and its features were compared with those of the known type-I and type-II cohesin structures. The Rf-CohE module folds into a nine-stranded beta-sandwich with jellyroll topology, typically observed for cohesins, and includes two beta-flaps in the midst of beta-strands 4 and 8, similar to the type-II cohesin structures. However, the presence in Rf-CohE of an additional 13-residue alpha-helix located between beta-strands 8 and 9 represents a dramatic divergence from other known cohesin structures. The prominent alpha-helix is enveloped by an extensive N-terminal loop, not observed in any other known cohesin, which embraces the helix presumably enhancing its stability. A planar surface at the upper portion of the front face of the molecule, bordered by beta-flap 8, exhibits plausible dimensions and exposed amino acid residues to accommodate the dockerin-binding site.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Ruminococcus/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Celulose/química , Clostridium thermocellum/metabolismo , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Coesinas
6.
Methods Enzymol ; 510: 247-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22608730

RESUMO

Family 3 carbohydrate-binding modules (CBM3s) are among the most distinctive, diverse, and robust. CBM3s, which are numerous components of both free cellulases and cellulosomes, bind tightly to crystalline cellulose, and thus play a key role in cellulose degradation through their substrate targeting capacity. In addition to the accepted cellulose binding surface of the CBM3 molecule, a second type of conserved face (the "shallow groove") is retained on the opposite side of the molecule in all CBM3 subfamilies, irrespective of the loss or modification of the cellulose-binding function. The exact function of this highly conserved shallow groove is currently unknown. The cellulosomal system contains many linker segments that interconnect the various modules in long polypeptides chains. These linkers are varied in length (5-700 residues). The long linkers are commonly composed of repeated sequences that are often rich in Ser, Pro, and Thr residues. The exact function of the linker segments in the cellulosomal system is currently unknown, although they likely play several roles. In this chapter, we document the binding interaction between the conserved shallow-groove region of the CBM3s with selected cellulosomal linker segments, which may thus induce conformational changes in the quaternary structure of the cellulosome. These conformational changes would presumably promote changes in the overall arrangement of the cellulosomal enzymes, which would in turn serve to enhance cellulosome efficiency and degradation of recalcitrant polysaccharide substrates. Here, we describe two different methods for determining the interactions between a model CBM3 and cellulosomal linker peptides.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/enzimologia , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calorimetria/métodos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Celulases/química , Celulases/genética , Celulossomas/química , Celulossomas/genética , Clonagem Molecular/métodos , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Titulometria/métodos
7.
Biotechnol Bioeng ; 94(5): 1005-11, 2006 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16572452

RESUMO

Protein crystals, routinely prepared for the elucidation of protein 3D structures by X-ray crystallography, present an ordered and highly accurate 3D array of protein molecules. Inherent to the 3D arrangement of the protein molecules in the crystal is a complementary 3D array of voids made of interconnected cavities and exhibiting highly ordered porosity. The permeability of the porosity of chemically crosslinked enzyme protein crystals to low molecular weight solutes, was used for enzyme mediated organic synthesis and size exclusion chromatography. This permeability might be extended to explore new potential applications for protein crystals, for example, their use as bio-templates for the fabrication of novel, nano-structured composite materials. The quality of composites obtained from "filling" of the ordered voids in protein crystals and their potential applications will be strongly dependent upon an accurate preservation of the order in the original protein crystal 3D array during the "filling" process. Here we propose and demonstrate the feasibility of monitoring the changes in 3D order of the protein array by a step-by-step molecular level monitoring of a model system for hydrogel bio-templating by glutaraldehyde crosslinked lysozyme crystals. This monitoring is based on step-by-step comparative analysis of data obtained from (i) X-ray crystallography: resolution, unit cell dimensions and B-factor values and (ii) fluorescence decay kinetics of ultra-fast laser activated dye, impregnated within these crystals. Our results demonstrated feasibility of the proposed monitoring approach and confirmed that the stabilized protein crystal template retained its 3D structure throughout the process.


Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura , Espectrometria de Fluorescência/métodos , Adsorção , Materiais Revestidos Biocompatíveis/análise , Materiais Revestidos Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Estudos de Viabilidade , Glutaral/química , Complexos Multiproteicos/análise , Proteínas/análise
8.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 10): 1906-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388948

RESUMO

The expression, crystallization and phasing of subunit C (Vma5p) of the yeast (Saccharomyces cerevisiae) vacuolar proton-translocating ATPase (V-ATPase) is described. The expressed protein consists of 412 residues: 392 from the reading frame of Vma5p and 20 N-terminal residues originating from the plasmid. Diffraction-quality crystals were obtained using the hanging-drop and sitting-drop vapour-diffusion methods assisted by streak-seeding, with PEG 3350 as precipitant. The crystals formed in hanging drops diffracted to 1.80 A and belong to space group P4(3)2(1)2(1), with unit-cell parameters a = b = 62.54, c = 327.37 A, alpha = beta = gamma = 90 degrees. The structure was solved using SIRAS with a Lu(O2C2H3)2 heavy-atom derivative.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Cristalização , Plasmídeos/metabolismo , Polietilenoglicóis/química , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Difração de Raios X/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA