RESUMO
Harnessing the developmental events of mesenchymal condensation to direct postnatal dental stem cell aggregation represents a cutting-edge and promising approach to tooth regeneration. Tooth avulsion is among the most prevalent and serious dental injuries, and odontogenic aggregates assembled by stem cells from human exfoliated deciduous teeth (SHED) have proven effective in revitalizing avulsed teeth after replantation in the clinical trial. However, whether and how SHED aggregates (SA) communicate with recipient components and promote synergistic tissue regeneration to support replanted teeth remains elusive. Here, it is shown that SA-mediated avulsed tooth regeneration involves periodontal restoration and recovery of recipient Gli1+ stem cells, which are mobilized and necessarily contribute to the reestablishment of the tooth-periodontal ligament-bone interface. Mechanistically, the release of extracellular vesicles (EVs) is revealed indispensable for the implanted SA to mobilize recipient Gli1+ cells and regenerate avulsed teeth. Furthermore, SHED aggregates-released EVs (SA-EVs) are featured with odontogenic properties linked to tissue regeneration, which enhance migration, proliferation, and differentiation of Gli1+ cells. Importantly, local application of SA-EVs per se empowers recipient Gli1+ cells and safeguards regeneration of avulsed teeth. Collectively, the findings establish a paradigm in which odontogenesis-featured EVs govern donor-recipient stem cell interplay to achieve tooth regeneration, inspiring cell-free translational regenerative strategies.
Assuntos
Vesículas Extracelulares , Odontogênese , Regeneração , Células-Tronco , Vesículas Extracelulares/metabolismo , Odontogênese/fisiologia , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Humanos , Animais , Dente/fisiologia , Camundongos , Diferenciação Celular , Dente Decíduo/citologia , Proliferação de Células , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Nanogéis , Óxido Nítrico , Neoplasias Pancreáticas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Microambiente Tumoral , Neoplasias PancreáticasRESUMO
Low-k dielectrics are urgently needed in modern integrated circuits. The introduction of free volume instead of porous structures has become a powerful strategy to reduce the k value. According to this strategy, the biomass resource rosin-containing hydrogenated phenanthrene ring was introduced into benzocyclobutene (BCB) resin to reduce the k value; then a rosin-based BCB monomer was successfully synthesized. Meanwhile, the BCB monomer without a rosin skeleton was prepared. After converting the monomers into thermo-crosslinked materials, notably that the rosin skeleton has a great influence on the free volume and k value of the material. The fractional free volume and k value of the former are 26% and 2.44, respectively, and those of the latter are 14% and 2.84, respectively. In addition, the distances between molecular chains and the density of the former are 0.60 nm and 1.06 g cm-3, respectively; those of the latter are 0.56 nm and 1.28 g cm-3, respectively. These data show that introducing hydrogenated phenanthrene rings occupies part of the space and hinders the packing of molecular chains, which increases the distance between molecular chains and reduces the density of the polymer, resulting in an increasing free volume and a reducing k value. Notably that introducing hydrogenated phenanthrene rings cannot affect other properties of the material. Therefore, this research indicates that introducing rosin skeletons can prepare high-performance materials, which provide some promising low-k materials for the development of electronics and microelectronics.
Assuntos
Fenantrenos , Resinas Vegetais , Fenantrenos/química , Polímeros , Resinas Vegetais/químicaRESUMO
Zimmermann-Laband Syndrome (ZLS; MIM 135500) is a rare genetic disorder with the main clinical manifestations of gingival fibromatosis and finger/toe nail hypoplasia. KCNH1 (potassium channel, voltage-gated, subfamily H, member-1), KCNN3 (potassium channel, voltage-gated, subfamily H, member-3) and ATP6V1B2 (ATPase H+ transporting V1 subunit B2) genes are considered causative genes for ZLS. However, there are limited reports about the diverse clinical presentation and genetic heterogeneity. Reporting more information on phenotype-genotype correlation and the treatment of ZLS is necessary. This case reported a 2-year-old patient with gingival enlargement that failure of eruption of the deciduous teeth and severe hypoplasia of nails. Based on a systemic examination and a review of the relevant literature, we made an initial clinical diagnosis of ZLS. A novel pathogenic variant in the KCNH1 gene was identified using whole-exome sequencing to substantiate our preliminary diagnosis. The histopathological results were consistent with gingival fibromatosis. Gingivectomy and gingivoplasty were performed under general anesthesia. After surgery, the gingival appearance improved significantly, and the masticatory function of the teeth was restored. After 2-year follow-up, the gingival showed slightly hyperplasia. Systemic examination and gene sequencing firstly contribute to provide information for an early diagnosis for ZLS, then timely removal of the hyperplastic gingival facilitates the establishment of a normal occlusal relationship and improves oral aesthetics.
Assuntos
Fibromatose Gengival , Humanos , Fibromatose Gengival/genética , Pré-Escolar , Deformidades Congênitas da Mão/genética , Anormalidades Múltiplas/genética , Masculino , Gengivectomia/métodos , Feminino , Unhas Malformadas/genética , Anormalidades CraniofaciaisRESUMO
Intensive application of low-density polyethylene mulch films has resulted in substantial accumulation of residual plastics in agricultural soil. Although considerable concerns have been raised on the residual plastic pollution, their impacts on the soil-rhizosphere microbe-plant ecosystem have not been fully elucidated. In this study, we used a pot experiment to determine the effects of residual plastic films with different sizes (La, Ma, Mi and Mx) on properties, enzyme systems and nutrients of soil, composition of rhizosphere microbial community, and physiology, growth and stress response of rice plants. Residual plastic films significantly decreased soil bulk density and increased soil porosity, leading to the alteration of extracellular enzyme activities, and accumulation of dissolved nitrogen (NO3-N + NH4-N). The structures of both bacterial and fungal communities were significantly changed by residual plastic films with rhizosphere microbes more sensitive to small-sized plastics. Plant growth was inhibited to different extents by residual plastic films with different sizes. The weighted gene co-expression network analysis (WGCNA) showed that photosynthesis and carbon fixation of rice plants were repressed by residual plastic films, due to the reduced chlorophyll content and rubisco activity. In addition, the endogenous jasmonic acid and antioxidant enzyme system were induced to activate tolerant responses in rice plants to the stress imposed by residual plastic films. The partial least squares path models (PLS-PMs) revealed that residual plastic films had direct and/or indirect effects on the soil-rhizosphere microbe-plant system.
Assuntos
Microbiota , Oryza , Solo/química , Rizosfera , Ecossistema , Plásticos , Microbiologia do Solo , PlantasRESUMO
The enterovirus 71 (EV71) is the major pathogen of hand-foot-and-mouth disease (HFMD) and has been associated with severe neurological disease in children under 5 years of age. The molecular mechanisms underlying the response of human neural cells to EV71 infection still remain unclear. In this study, the genome microarray was employed to perform transcriptome profiling analysis in human neuroblastoma SK-N-SH cells infected by EV71. The results indicated that EV71 infection lead to altered expression of 87 human mRNA. The up-regulated gene mainly include the cytokine and chemokine, ubiquitin mediated proteolysis, Toll-like receptor signaling pathway, p53 signaling pathway, apoptosis, leukocyte transendothelial migration, MAPK signaling pathway and Jak-STAT signaling pathway, etc. Finally, the microarray results were validated using real-time RT-PCR and ELISA in the RNA and protein level, respectively. Our results suggested that the high fatality rate of EV71 infection probably derived from a severe immune response caused by cytokines and chemokines. The findings will help to better understand the host responses to EV71 infection and provide the potential strategy for prevention and control of EV71 infection.
RESUMO
The Archaeal protein RadA, a RecA/Rad51 homolog, is able to promote pairing and exchange of DNA strands with homologous sequences. Here, we have expressed, purified, and crystallized the catalytically active RadA protein from Sulfolobus solfataricus (Sso). Preliminary X-ray analysis indicated that Sso RadA protein likely forms helical filament in protein crystals. Using atomic force microscopy with a carbon nanotube (CNT) tip for high-resolution imaging, we demonstrated that Sso RadA protein indeed forms fine helical filaments up to 1 microm in length ( approximately 10nm pitch) in the absence of DNA and nucleotide cofactor. We also observed that Sso RadA protein helical filament could dissemble upon incubation with ssDNA, and then the proteins associate with ssDNA to form nucleoprotein filament.