Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(8): e2000677, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33522026

RESUMO

Inspired by protein polymerizations, much progress has been made in making "polymer-like" supramolecular structures from small synthetic subunits through non-covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in-situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.


Assuntos
Compostos Heterocíclicos , Polímeros , Substâncias Macromoleculares , Polimerização , Água
2.
Sci Rep ; 6: 19370, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26813916

RESUMO

Because of its good biocompatibility and biodegradability, albumins such as bovine serum albumin (BSA) and human serum albumin (HSA) have found a wide range of biomedical applications. Herein, we report that glutaraldehyde cross-linked BSA (or HSA) forms a novel fluorescent biological hydrogel, exhibiting new green and red autofluorescence in vitro and in vivo without the use of any additional fluorescent labels. UV-vis spectra studies, in conjunction with the fluorescence spectra studies including emission, excitation and synchronous scans, indicated that three classes of fluorescent compounds are presumably formed during the gelation process. SEM, FTIR and mechanical tests were further employed to investigate the morphology, the specific chemical structures and the mechanical strength of the as-prepared autofluorescent hydrogel, respectively. Its biocompatibility and biodegradability were also demonstrated through extensive in vitro and in vivo studies. More interestingly, the strong red autofluorescence of the as-prepared hydrogel allows for conveniently and non-invasively tracking and modeling its in vivo degradation based on the time-dependent fluorescent images of mice. A mathematical model was proposed and was in good agreement with the experimental results. The developed facile strategy to prepare novel biocompatible and biodegradable autofluorescent protein hydrogels could significantly expand the scope of protein hydrogels in biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Fluorescência , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Proteínas/química , Animais , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Glutaral/química , Fenômenos Mecânicos , Camundongos , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA