Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mater Des ; 2232022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381607

RESUMO

Over the last years, research on the design of dental self-healing polymers has grown dramatically. It is related to the promising potential of maximizing the clinical lifespan of dental restorations that this strategy holds. In this manuscript, the microcapsule-based strategy is innovated by incorporating the high toughness component N,N-Dimethylacrylamide (DMAM) into the healing agent systems and analyzing in-depth the change in crack propagation behavior induced by the addition of microcapsules into the highly crosslinked polymeric network. In general, the addition of the hydrophilic and high vapor pressure DMAM into the healing agent systems imposed a challenge for the microencapsulation, which highlighted the importance of tailoring the properties of the capsules' shells according to the core composition. The addition of DMAM as cushioning agent proved to be a successful strategy since it resulted in increased G'/G" crossover time from 0.06 (control) to 0.57 s and decreased storage modulus from 8.0 (control) to 0.5GPa. In addition, the incorporation of microcapsules within the polymerized networks provided obstacles to crack propagation, which translated to an overall reinforcement of the polymeric network, as evidenced by the increase in toughness up to 50 % and energy required to propagate cracks up to 100 % in systems containing DMAM at 20 wt%.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36721424

RESUMO

Objectives: For many years, the requirements for dental polymers were limited to inertially filling the cavity and restoring form, function, and esthetics. Inorganic filler systems were widely enhanced to maximize the mechanical properties and optimize finishing and polishing procedures. The development of alternative photoinitiator systems also improved the carbon-carbon double bond conversion, increasing biocompatibility, wear, and stain resistance. However, despite laudable progress, the clinical life span of dental restorations is still limited, and their replacement is the most common procedure in dental offices worldwide. In the last few years, the development of materials with the potential to adapt to physiological stimuli has emerged as a key step to elevating dental polymers to a higher excellence level. In this context, using polymeric networks with self-healing properties that allow for the control of the propagation of microcracks is an appealing strategy to boost the lifetime of dental restorations. This review aims to report the current state-of-the-art of extrinsic self-healing dental polymers and provide insights to open new avenues for further developments. General classification of the self-healing polymeric systems focusing on the current extrinsic strategies used to inhibit microcracks propagation in dental polymers and recover their structural integrity and toughness are presented. Search Strategy: An electronic search was perfomed using PubMed, Google Scholar, and Scopus databases. Only studies published in English on extrinsic self-healing polymeric systems were included. Overall Conclusions: Self-healing materials are still in their infancy in dentistry, and the future possibilities are almost limitless. Although the mouth is a unique environment and the restorative materials have to survive chemical, physical, and mechanical challenges, which limits the use of some strategies that might compromise their physicochemical performance, there are countless untapped opportunities to overcome the challenges of the current systems and advance the field.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36721425

RESUMO

Objectives: The development of thermosetting polymers with autonomic reparability has become an important research topic since it has the potential to benefit several fields such as biomaterials, tissue engineering, paint and coating technologies, electronics, and soft robotics. In dentistry, the development of restorative materials capable of inhibiting the propagation of microcracks caused by masticatory forces and thermal stress may represent a crucial expansion of the limited clinical lifespan of dental restorations, which is a pressing challenge. Biological systems have inspired the underlying concepts and designs of synthetic polymeric self-healing systems, and different strategies have been used to impart autonomous repair capability in polymers. In this review, the most relevant intrinsic strategies are categorized based on the reaction mechanisms. In general, these strategies rely on the incorporation of latent functionalities capable of undergoing reversible chemical bonds within the polymeric structure (chemically or compositionally tuned). Search Strategy: The searches were conducted in the databases Scopus, PubMed, and Google Scholar and limited to articles that were written in English and published during the last ten years. A few additional articles were included by complementing the database searches with manual review of the reference lists. Overall Conclusions: Although intrinsic approaches remain underexplored in dentistry, a wide variety of elegant chemistries with tremendous translational potential employed in other fields to promote autonomic repair are highlighted in this review.

4.
Dent Mater ; 37(5): 805-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663882

RESUMO

The stability of the bond between polymeric adhesives to mineralized substrates is crucial in many biomedical applications. The objective of this study was to determine the effect of methyl substitution at the α- and ß-carbons on the kinetics of polymerization, monomer hydrolytic stability, and long-term bond strength to dentin for methacrylamide- and methacrylate-based crosslinked networks for dental adhesive applications. METHODS: Secondary methacrylamides (α-CH3 substituted=1-methyl HEMAM, ß-CH3 substituted=2-methyl HEMAM, and unsubstituted=HEMAM) and OH-terminated methacrylates (α- and ß-CH3 mixture=1-methyl HEMA and 2-methyl HEMA, and unsubstituted=HEMA) were copolymerized with urethane dimethacrylate. The kinetics of photopolymerization were followed in real-time using near-IR spectroscopy. Monomer hydrolysis kinetics were followed by NMR spectroscopy in water at pH 1 over 30 days. Solvated adhesives (40 vol% ethanol) were used to bond composite to dentin and microtensile bond strength (µTBS) measured after 24h and 6 months storage in water at 37°C. RESULTS: The rate of polymerization increased in the following order: OH-terminated methacrylates≥methacrylamides>NH2-terminated methacrylates, with minimal effect of the substitution. Final conversion ranged between 79% for 1-methyl AEMA and 94% for HEMA. 1-methyl-HEMAM showed the highest and most stable µTBS, while HEMA showed a 37% reduction after six months All groups showed measurable degradation after up to 4 days in pH 1, with the methacrylamides showing less degradation than the methacrylates. Additionally, transesterification products were observed in the methacrylamide groups. SIGNIFICANCE: Amide monomers were significantly more stable to hydrolysis than the analogous methacrylates. The addition of a α- or ß-CH3 groups increased the rate of hydrolysis, with the magnitude of the effect tracking with the expected base-catalyzed hydrolysis of esters or amides, but opposite in influence. The α-CH3 substituted secondary methacrylamide, 1-methyl HEMAM, showed the most stable adhesive interface. A side reaction was observed with transesterification of the monomers studied under ambient conditions, which was not expected under the relatively mild conditions used here, which warrants further investigation.


Assuntos
Colagem Dentária , Acrilamidas , Resinas Compostas , Cimentos Dentários , Dentina , Adesivos Dentinários , Teste de Materiais , Metacrilatos , Metilação , Cimentos de Resina , Resistência à Tração
5.
Dent Mater ; 36(8): 1028-1037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536589

RESUMO

OBJECTIVES: The susceptibility of methacrylates to hydrolytic and enzymatic degradation may be a contributing factor limiting the clinical lifespan of resin composite restorations. The elimination of labile ester bonds is a potential advantage of methacrylamides, which have been shown to produce more stable restorative interfaces. The rationale of this study is to design hydrolytically and enzymatically stable adhesive monomers, with the added benefit of being able to form crosslinked networks. The objective of this study was to synthesize difunctional, hybrid methacrylate-methacrylamide monomers, and evaluate them as potential monomers for dental adhesives. MATERIALS AND METHODS: HEMA, TEGDMA (controls) or secondary methacrylamides (HEMAM - commercially available, 2EM and 2dMM - newly synthesized) either bearing a hydroxyl group or a methacrylate functionality (Hybrids-Hy), were added at 40mass% to bisGMA. The photoinitiator system consisted of 2-dimethoxyphenyl acetophenone (DMPA) and diphenyl iodonium hexafluorophosphate (DPI-PF6) at 0.2 and 0.4mass%, respectively. Polymerization kinetics were followed in real-time by near-IR spectroscopy during light activation at 630mW/cm2 for 300s. Water sorption and solubility (WS, SL) were measured according to ISO 4049. Storage modulus in shear (G') for 300s was obtained by oscillatory rheometry. For the microtensile bond strength (µTBS), fully formulated adhesives containing 40vol% ethanol were used to restore caries-free human third molars. Bonded specimens with 1mm2 cross-sectional area were tested after 48h and 6 months storage in water at 37°C. Single bond (SB) was tested as a commercial control. Data were analysed with one-way ANOVA and Tukey's test and Student's t-test (α=0.05). RESULTS: In general, hybrid versions showed lower polymerization rate and degree of conversion, whereas the methacrylate controls, HEMA and TEGDMA, showed the highest values. The hybrid versions showed lower values of WS and SL than their monofunctional versions. HEMAM Hy showed the highest values of G' and TEGDMA, 2EM, and 2dMM-Hy the lowest. The µTBS values between 48h and 6 months were statistically reduced only for the HEMA and both 2dMM materials. The formulation containing the monofunctional methacrylamide (HEMAM) showed only 9% reduction in µTBS after 6 months of aging, while the other groups showed a decrease ranging between 18% and 33%. CONCLUSION: Overall, hybrid monomers showed lower reactivity than their analogous monofunctional versions, but had markedly lower water sorption. Shear storage modulus was affected differently by the addition of the second functionality. HEMAM-containing systems were able to maintain stable long-term dentin bond strength, which demonstrates that bonding stability is a result of the complex interplay among the factors studied. CLINICAL SIGNIFICANCE: The novel monomers showed here are potential alternatives to the current methacrylate adhesives, with selected formulations presenting greater bond stability.


Assuntos
Colagem Dentária , Metacrilatos , Acrilamidas , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Cimentos Dentários , Dentina , Humanos , Teste de Materiais , Cimentos de Resina , Resistência à Tração
6.
Dent Mater ; 36(7): 884-892, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402514

RESUMO

OBJECTIVE: Water sorption, high volumetric shrinkage, polymerization stress, and potential estrogenic effects triggered by leached compounds are some of the major concerns related to BisGMA-TEGDMA co-monomer systems used in dental composites. These deficiencies call for the development of alternative organic matrices in order to maximize the clinical lifespan of resin composite dental restorations. This study proposes BisGMA-free systems based on the combination of UDMA and a newly synthesized diurethane dimethacrylate, and evaluates key mechanical and physical properties of the resulting materials. METHODS: 2EMATE-BDI (2-hydroxy-1-ethyl methacrylate) was synthesized by the reaction between 2-hydroxy-1-ethyl methacrylate with a difunctional isocyanate (1.3-bis (1- isocyanato-1-methylethylbenzene) - BDI). The compound was copolymerized with UDMA (urethane dimethacrylate) at 40 and 60wt%. UDMA copolymerizations with 40 and 60wt% TEGDMA (triethylene glycol dimethacrylate) were tested as controls, as well as a formulation based in BisGMA (bisphenol A-glycidyl methacrylate)-TEGDMA 60:40% (BT). The organic matrices were made polymerizable by the addition of DMPA (2.2-dimethoxyphenoxy acetophenone) and DPI-PF6 (diphenyliodonium hexafluorophosphate) at 0.2 and 0.4wt%, respectively. Formulations were tested as composite with the addition of 70wt% inorganic content consisting of barium borosilicate glass (0.7µm) and fumed silica mixed in 95 and 5wt%, respectively. All photocuring procedures were carried out by a mercury arc lamp filtered to 320-500nm at 800mW/cm2. The experimental resin composites were tested for kinetics of polymerization and polymerization stress in real time. Flexural strength, elastic modulus, water sorption, and solubility were assessed according to ISO 4049. Biofilm formation was analyzed after 24h by luciferase assay. Data were statistically analyzed by one-way ANOVA and Tukey's test (α≤0.05). RESULTS: In general, the addition of 2EMATE-BDI into the formulations decreased the maximum rate of polymerization (RPMAX), the degree of conversion at RPMAX (DC at RPMAX), and the final degree of conversion (final DC). However, these reductions did not compromise mechanical properties, which were comparable to the BT controls, especially after 7-day water incubation. The incorporation of 60wt% 2EMATE-BDI reduced water sorption of the composite. 2EMATE-BDI containing formulations showed reduction in polymerization stress of 30% and 50% in comparison to BT control and TEGDMA copolymerizations, respectively. Biofilm formation was similar among the tested groups. SIGNIFICANCE: The use of the newly synthesized diurethane dimethacrylate as co-monomer in dental resin composite formulations seems to be a promising option to develop polymers with low-shrinkage and potentially decreased water degradation.


Assuntos
Resinas Compostas , Metacrilatos , Bis-Fenol A-Glicidil Metacrilato , Módulo de Elasticidade , Teste de Materiais , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos
7.
Dent Mater ; 35(10): 1378-1387, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31378307

RESUMO

OBJECTIVE: Methacrylamide-based monomers are being pursued as novel, hydrolytically stable materials for use in dental adhesives. The impact of residual solvents, due to the chemical synthesis procedures or the need for solvated adhesives systems, on the kinetics of polymerization and mechanical properties was the aim of the present investigation. METHODS: Two base monomers (70wt% BisGMA or HEMAM-BDI - newly synthesized secondary methacrylamide) were combined with 30wt% N,N-dimethylacrylamide. Eethyl acetate (EtOAc), or 75vol% ethanol/25vol% water (EtOH/H2O) were added as solvents in concentrations of 2, 5, 15 and 20wt%. The resins were made polymerizable by the addition of 0.2wt% 2,2-dimethoxy-2-phenyl acetophenone (DMPA) and 0.4wt% diphenyliodonium hexafluorophosphate (DPI-PF6). Specimens (n=3) were photoactivated with a mercury arc lamp (Acticure 4000, 320-500nm, 250mW/cm2) for 5min. Degree of conversion (DC, %) was tracked in near-IR spectroscopy in real time and yield strength and modulus of elasticity were measured in three-point bending after dry and wet storage (n=6). The data was subject to one-way ANOVA/Tukey's Test (p≤0.05), or Student's t-test (p≤0.001). RESULTS: In all groups for both BisGMA and HEMAM-BDI-based materials, DC and DC at Rpmax increased and maximum rate of polymerization decreased as solvent concentration increased. Despite the increased DC, BisGMA mixtures showed a decrease in FS starting at 5wt% EtOAc or 15wt% EtOH/H2O. Yield strength for the HEMAM-BDI groups was overall lower than that of the BisGMA groups, but the modulus of elasticity was significantly higher. SIGNIFICANCE: The presence of residual solvent, from manufacturing or from practitioner's handling, affects polymerization kinetics and mechanical properties of resins. Methacrylates appear to be more strongly influenced than methacrylamides.


Assuntos
Acrilamida , Materiais Dentários , Acrilamidas , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Módulo de Elasticidade , Humanos , Teste de Materiais , Metacrilatos , Polimerização , Solventes
8.
Sci Rep ; 9(1): 2286, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783177

RESUMO

Stress of polymerization is one of the most significant drawbacks of dental resin composites, since it is related to poor marginal adaptation, postoperative pain, and secondary caries. Previous studies have shown that thiourethane oligomers incorporated into the organic matrix represents a promising strategy to reduce stress and increase fracture toughness in dental composites. However, this strategy promotes a significant increase of the viscosity system, which may represent a challenge for clinical application. The objective of this study was to functionalize the surface of inorganic filler particles with thiouretanes and evaluate the impact on mechanical properties and kinetics of polymerization. Our results showed that composites filled with thiourethane-silanized inorganic fillers showed up to 35% lower stress while doubling mechanical properties values. This was achieved with no prejudice to the viscosity of the material and following a clinically acceptable photoactivation protocol.


Assuntos
Resinas Acrílicas/química , Resinas Compostas/química , Poliuretanos/química , Uretana/química , Teste de Materiais , Microscopia , Polimerização
9.
Dent Mater ; 35(5): 686-696, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826074

RESUMO

OBJECTIVES: Methacrylamides are proposed as components for dental adhesive systems with enhanced resistance to hydrolytic and enzymatic degradation. The specific objective of this study was to evaluate the polymerization kinetics, water sorption and solubility, pH-derived degradation and microtensile bond strength of various monofunctional acrylamides and meth(acrylamides) when copolymerized with dimethacrylates. METHODS: Base monomers were added at 60 wt%, and included either BisGMA or UDMA. Monofunctional monomers were added at 40 wt%, including one (meth)acrylate as the control, two secondary methacrylamides and two tertiary acrylamides. DMPA (0.2 wt%) and DPI-PF6 (0.4 wt%)/BHT (0.1 wt%) were added as initiators/inhibitor. Polymerization kinetics wwere followed with near-IR spectroscopy in real time. Water sorption (WS) and solubility (SL) were measured following ISO 4049. Monomer degradation at different pH levels was assessed with 1H NMR. Microtensile bond strength (MTBS) was assessed in caries-free human third molars 48 h and 3 weeks after restorations were placed using solvated BisGMA-based adhesives (40 vol% ethanol). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05). RESULTS: As expected, rate of polymerization and final degree of conversion (DC) were higher for the acryl versions of each monomer, and decreased with increasing steric hindrance around the vinyl group for each molecule. In general, UDMA copolymerizations were more rapid and extensive than for BisGMA, but this was dependent upon the specific monofunctional monomer added. WS/SL were in general higher for the (meth)acrylamides compared to the (meth)acrylates, except for the tertiary acrylamide, which showed the lowest values. One of the secondary methacrylamides was significantly more stable than the methacrylate control, but the alpha substitutions decreased stability to degradation in acid pH. MTBS in general was higher for the (meth)acrylates. While for all materials the MTBS values at 3 weeks decreased in relation to the 24 h results, the tertiary acrylamide showed no reduction in bond strength. SIGNIFICANCE: This study highlights the importance of considering steric and electronic factors when designing monomers for applications where rapid polymerizations are needed, especially when co-polymerizations with other base monomers are required to balance mechanical properties, as is the case with dental adhesives. The results of this investigation will be used to design fully formulated adhesives to be tested in clinically-relevant conditions.


Assuntos
Colagem Dentária , Cimentos Dentários , Acrilamidas , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Humanos , Teste de Materiais , Metacrilatos , Polimerização , Resistência à Tração , Água
10.
Acta Biomater ; 100: 132-141, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574321

RESUMO

OBJECTIVES: Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects. MATERIALS AND METHODS: Tertiary quaternary ammonium acrylamides (AM) and methacrylamides (MAM) with alkyl side chain lengths of 9 and 14 carbons (C9 and C14) were synthesized and incorporated at 10 wt% into experimental composites based on BisGMA:TEGDMA (1:1), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8 wt%) and 70 wt% barium glass fillers. Analogous methacrylate versions (MA) were used as controls. Degree of conversion (DC) and rate of polymerization (RP) during photoactivation (800 mW/cm2) were followed in real-time with near-IR. Flexural Strength (FS) and Modulus (E) were measured on 2 × 2 × 25 mm bars in 3-point bending after 24 h dry storage and 7-day storage in water at 37 °C. Antimicrobial properties and biofilm adhesion (fouling) were evaluated by bioluminescence (Luciferase Assay) and biofilm removal by water spray microjet impingement test, respectively. Cytotoxicity was assessed by MTT assay on dental pulp stem cells (DPSC). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05). RESULTS: DC was similar for all groups tested (∼70%). Both MAMs and C14-AM presented significantly lower RP. Under dry conditions, FS (110-120 MPa) and E (8-9 GPa) were similar for all groups. After water storage, all materials presented FS/E similar to the control, except for C14-AM (for FS) and C14-MAM (for E), which were lower. All C14 versions were strongly antibacterial, decreasing the titer counts of biofilm by more than two orders of magnitude in comparison to the control. C9 monomers did not present significant antibacterial nor antifouling properties. And biofilms had approximately equivalent adhesion on the C9 composites as on the control. Cytotoxicity did not show significant differences between the MA and AM versions and the control group. CONCLUSIONS: C14-QA monomers based on methacrylates and meth-acrylamides present strong antibacterial properties, and in general, similar conversion/mechanical properties compared to the methacrylate control. STATEMENT OF SIGNIFICANCE: This work demonstrates the viability of methacrylamides and acrylamides as potential components in dental restorative materials with antimicrobial properties. The use of ester-free polymerizable functionalities has the potential of improving the degradation resistance of these materials long-term. The use of (meth)acrylamides did not interfere with the antimicrobial potential of quaternary ammonium-based materials.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ésteres/química , Teste de Materiais , Fenômenos Mecânicos , Polimerização , Acrilamida/química , Resinas Compostas/química , Humanos , Cinética , Luminescência , Metacrilatos/química , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Amônio Quaternário/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
11.
Dent Mater ; 34(2): 192-200, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29110921

RESUMO

OBJECTIVES: To optimize the 3D printing of a dental material for provisional crown and bridge restorations using a low-cost stereolithography 3D printer; and compare its mechanical properties against conventionally cured provisional dental materials. METHODS: Samples were 3D printed (25×2×2mm) using a commercial printable resin (NextDent C&B Vertex Dental) in a FormLabs1+ stereolithography 3D printer. The printing accuracy of printed bars was determined by comparing the width, length and thickness of samples for different printer settings (printing orientation and resin color) versus the set dimensions of CAD designs. The degree of conversion of the resin was measured with FTIR, and both the elastic modulus and peak stress of 3D printed bars was determined using a 3-point being test for different printing layer thicknesses. The results were compared to those for two conventionally cured provisional materials (Integrity®, Dentsply; and Jet®, Lang Dental Inc.). RESULTS: Samples printed at 90° orientation and in a white resin color setting was chosen as the most optimal combination of printing parameters, due to the comparatively higher printing accuracy (up to 22% error), reproducibility and material usage. There was no direct correlation between printing layer thickness and elastic modulus or peak stress. 3D printed samples had comparable modulus to Jet®, but significantly lower than Integrity®. Peak stress for 3D printed samples was comparable to Integrity®, and significantly higher than Jet®. The degree of conversion of 3D printed samples also appeared higher than that of Integrity® or Jet®. SIGNIFICANCE: Our results suggest that a 3D printable provisional restorative material allows for sufficient mechanical properties for intraoral use, despite the limited 3D printing accuracy of the printing system of choice.


Assuntos
Coroas , Materiais Dentários/química , Planejamento de Prótese Dentária , Prótese Parcial , Impressão Tridimensional , Módulo de Elasticidade , Humanos , Software , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA