RESUMO
We studied internalization of vector nanocarriers loaded with plasmid DNA into C6 glioma cells. For improving selectivity of plasmid delivery, the liposomes were conjugated with monoclonal antibodies to VEGF and its receptor VEGFR2. Flow cytofluorometry and laser scanning confocal microscopy showed more intensive (more than 2-fold) internalization and accumulation of antibody-vectorized liposomes in C6 glioma cells in comparison with the control (liposomes conjugated with non-specific antibodies and non-vectorized liposomes). Using quantitative analysis of fluorescent signal, we showed that cationic immunoliposomes significantly more effective delivered pCop-Green-N plasmid DNA and ensured effective transfection of C6 glioma cells.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Glioma/terapia , Lipossomos/química , Plasmídeos/química , Plasmídeos/genética , Animais , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Citometria de Fluxo , Terapia Genética , Microscopia Confocal , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Internalization of liposomal nanocontainers conjugated with monoclonal antibodies to VEGF, VEGFR2 (KDR), and proteins overproduced in the tumor tissue was studied in vitro on cultures of poorly differentiated tumor cells. Comparative analysis of accumulation of vectored liposomes in the tumor cells was performed by evaluating co-localization of labeled containers and cell organelles by laser scanning confocal microscopy. We observed nearly 2 times more active penetration and accumulation of liposomes vectored with antibodies in the tumor cells in comparison with non-vectored liposomes. Selective clathrin-dependent penetration of vectored liposomes into tumor cells was demonstrated by using pharmacological agents inhibiting endocytosis.