Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 27(9): 140, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27534400

RESUMO

A novel synthetic method to synthesize hydroxyapatite/poly (D,L) lactic acid biocomposite is presented in this study by mixing only the precursors hydroxyapatite and (D,L) LA monomer without adding neither solvent nor catalyst. Three compositions were successfully synthesized with the weight ratios of 1/1, 1/3, and 3/5 (hydroxyapatite/(D,L) lactic acid), and the grafting efficiency of poly (D,L) lactic acid on hydroxyapatite surface reaches up to 84 %. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the hydroxyapatite particles were successfully incorporated into the poly (D,L) lactic acid polymer and X ray diffraction analysis showed that hydroxyapatite preserved its crystallinity after poly (D,L) lactic acid grafting. Differential scanning calorimetry shows that Tg of hydroxyapatite/poly (D,L) lactic acid composite is less than Tg of pure poly (D,L) lactic acid, which facilitates the shaping of the composite obtained. The addition of poly (D,L) lactic acid improves the adsorption properties of hydroxyapatite for fibronectin extracellular matrix protein. Furthermore, the presence of poly (D,L) lactic acid on hydroxyapatite surface coated with fibronectin enhanced pre-osteoblast STRO-1 adhesion and cell spreading. These results show the promising potential of hydroxyapatite/poly (D,L) lactic acid composite as a bone substitute material for orthopedic applications and bone tissue engineering.


Assuntos
Fibronectinas/química , Osteoblastos/citologia , Poliésteres/química , Engenharia Tecidual/métodos , Adsorção , Materiais Biocompatíveis/química , Osso e Ossos/patologia , Varredura Diferencial de Calorimetria , Adesão Celular , Linhagem Celular , Proliferação de Células , Durapatita/química , Matriz Extracelular/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Ortopedia , Osteoblastos/efeitos dos fármacos , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Difração de Raios X
2.
Acta Biomater ; 55: 481-492, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28434979

RESUMO

Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE: The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.


Assuntos
Materiais Biomiméticos , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 6 , Proteína Morfogenética Óssea 7 , Materiais Revestidos Biocompatíveis , Durapatita , Fibronectinas , Osteoblastos/metabolismo , Titânio , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 6/química , Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Fibronectinas/química , Fibronectinas/farmacologia , Humanos , Camundongos , Osteoblastos/citologia , Titânio/química , Titânio/farmacologia
3.
J Biomed Mater Res A ; 78(2): 222-35, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16628709

RESUMO

Microstructure of calcium phosphate ceramics has been shown to influence long-term in vitro cellular events like proliferation and differentiation, and to favor bone integration in vivo. As long-term cellular events are known to be dependent of early cell adhesion events, we decided to study the in vitro influence of the microstructure of a microporous hydroxyapatite (mHA) and a nonmicroporous hydroxyapatite (pHA) ceramic on serum protein adsorption and SaOs-2 human bone cells attachment after 30 min, 1, 4, and 24 h and cell growth after 96 h. Plastic coverslips were used as controls. Hydroxyapatite composition of mHA and pHA was confirmed by X-ray diffraction and Fourier transform infra-red spectroscopy. The surface energies of ceramics were calculated from contact-angle measurements in di-iodomethane, water or complete culture medium. The total surface energy was 44.8 mJ/m(2) for pHA and 48.7 mJ/m(2) for plastic. The contact-angle measurement was impossible on mHA likely because they displayed 12% of open microporosity, pHA ceramic exhibiting only closed pores (2.5%). Moreover, the roughness amplitude was largely higher on mHA (Sa = 4.35 microm) than on pHA (Sa = 0.065 microm) and plastic (Sa = 0.042 microm). Three different techniques were used to evaluate protein adsorption on the ceramics. SDS-PAGE of desorbed proteins demonstrated that more proteins desorbed from mHA (66.02 microg/m(2)) than from pHA (17.2 microg/m(2)) or plastic (0.08 microg/m(2)). A new method was used to evaluate in situ the quantity of adsorbed total proteins: the temperature-programmed desorption (TPD) analysis coupled with mass spectrometry. The TPD analysis confirmed that 10-fold more proteins adsorbed on mHA compared with those on pHA. A direct immunolabeling on ceramics revealed than more fibronectin and serum albumin adsorbed on microporous ceramic than on dense ceramic. The morphology of SaOs-2 cells was the same on all the substrates after 30 min. At later time points, cell morphology on mHA was radically different than on other surfaces, with the particularity of the cytoplasmic edge that appeared undistinguishable from the surface. Only the extremity of the cells and lamellipodia were visible. Cells seemed like "adsorbed" by the mHA surface, whereas on plastic and pHA surfaces the cells displayed classical aspects of polygonal spreading. The cells displayed on mHA the highest initial attachment potential after 30 min, 1, 4, 24 h but the lower proliferation potential after four days. This study confirms that a microporous ceramic surface can modulate the adsorption of proteins and further the adhesion and proliferation of human bone cells.


Assuntos
Osso e Ossos/citologia , Durapatita , Adsorção , Materiais Biocompatíveis , Osso e Ossos/ultraestrutura , Fibronectinas/análise , Humanos , Microscopia Eletrônica de Varredura , Difração de Raios X
4.
ACS Appl Mater Interfaces ; 7(1): 911-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485841

RESUMO

The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 µg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.


Assuntos
Materiais Revestidos Biocompatíveis/química , Fibronectinas/química , Titânio/química , Biomimética , Osso e Ossos/citologia , Adesão Celular , Linhagem Celular , Proliferação de Células , Durapatita/química , Humanos , Lasers , Espectrometria de Massas , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Compostos Orgânicos/química , Osseointegração , Osteoblastos/citologia , Próteses e Implantes , Desenho de Prótese , Ligação Proteica , Regeneração , Espectrofotometria , Células-Tronco/citologia , Propriedades de Superfície , Raios Ultravioleta
5.
Acta Biomater ; 7(1): 387-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20692384

RESUMO

Cell adhesion and subsequent viability are critical initial steps in biomaterial-tissue integration and are strongly dependent on the material properties and the presence of matrix proteins. In the present study MC3T3-E1 osteoblast-like cell behavior on silicon oxide (SO) and poly(L-lactic acid) (PLLA) substrates has been examined, with a focus on the influence of the adhesive protein fibronectin and the non-adhesive protein albumin adsorbed on the substrates. Quartz crystal microgravimetry showed adsorption of fibronectin and albumin to be nearly identical on SO and PLLA. Subsequent exposure a previously adsorbed fibronectin layer to albumin decreased the rigidity of the adsorbed layer without any measurable increase in adsorbed mass. Cell adhesion and spreading were significantly enhanced on both SO and PLLA substrates coated with fibronectin or with fibronectin and albumin, compared with uncoated or albumin-coated substrates. The only statistically significant difference between the two substrates in these assays was increased spreading on PLLA compared with SO in the presence of fibronectin and albumin. Cell proliferation was significantly higher on SO compared with PLLA after 7 days culture, but depended on the presence of fibronectin only in the PLLA system. In contrast, mitochondrial activity was higher on PLLA than on SO, and was enhanced by fibronectin on both substrates. PLLA substrates coated with fibronectin and subsequently exposed to albumin exhibited the highest level of cell differentiation, as assayed via alkaline phosphatase activity. These results demonstrate the importance of adsorbed proteins on osteoblast-like cell-surface interactions.


Assuntos
Fibronectinas/metabolismo , Ácido Láctico/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Óxidos/farmacologia , Polímeros/farmacologia , Albumina Sérica/metabolismo , Compostos de Silício/farmacologia , Silício/farmacologia , Adsorção/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Camundongos , Microscopia de Força Atômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoblastos/enzimologia , Poliésteres , Propriedades de Superfície/efeitos dos fármacos
6.
Can J Microbiol ; 51(9): 811-5, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16391662

RESUMO

The main objective of this study was to compare the adherence properties of four Pseudomonas fluorescens isolates from different ecological niches (human tissue, rhizosphere, drinking water, and cow milk). The substrates used to test P. fluorescens adherence were as follows: cultured human respiratory epithelial cells A549, immobilized plant fibronectin-like protein, and polystyrene. For all the experiments, bacteria were grown at 27 degrees C. The adherence assay to human cells was performed at 37 degrees C, whereas adherence to fibronectin and polystyrene was done at 27 degrees C. The four strains tested adhered to A549 cells but showed different adherence patterns. At 3 h, the milk isolate showed an aggregative adherence phenotype, whereas the three other isolates showed a diffuse adherence pattern. With a longer incubation time of 24 h, the aggregative pattern of the milk isolate disappeared, the adherence of the clinical strain increased, the adherence of the water isolate decreased, and morphological changes in A549 cells were observed with the clinical, water, and soil isolates. The four strains tested formed biofilms on polystyrene dishes. The clinical and milk isolates were the more efficient colonizers of polystyrene surfaces and also the more adherent to immobilized plant fibronectin-like protein. There was no relation between bacterial surface hydrophobicity and P. fluorescens adherence to the substrates tested. The main conclusions of these results are that P. fluorescens is an adherent bacterium, that no clear correlation exists between adherence and ecological habitat, and that P. fluorescens can adhere well to substrates not present in its natural environment.


Assuntos
Aderência Bacteriana , Ecossistema , Células Epiteliais/microbiologia , Fibronectinas/metabolismo , Plantas/metabolismo , Poliestirenos/metabolismo , Pseudomonas fluorescens/fisiologia , Animais , Bovinos , Água Doce/microbiologia , Humanos , Leite/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/isolamento & purificação , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA