Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Res ; 215(Pt 2): 114339, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115417

RESUMO

Corn stalk-based and wheat straw-based biochar were modified by lignin impregnation and applied to adsorb tetracycline hydrochloride (TCH) in wastewater. Porous properties of lignin impregnated biochar were improved and showed better adsorption performance for TCH. Lignin impregnated wheat straw biochar (WS-L) had the maximum adsorption capacity of 31.48 mg/g, which was 1.89 times compared to corresponding pristine biochar, because excellent pore structure developed via the lignin impregnation and carbonization. The adsorption behavior of TCH molecules on biochar could be interpreted well by two-step process, and it postulated to be a physical adsorption process based on pore filling, hydrogen bonding, π-π interaction, and electrostatic interactions. And cations including Na+, K+, Mg2+ and Al3+ could compete with TCH for adsorption, while Ca2+ could promote TCH adsorption by forming tetracycline-Ca2+ complexes. Maximum TCH adsorption occurred at pH of 7. The best performing lignin impregnated biochar was WS-L that demonstrated the biochar modulated by lignin had the potential to remove antibiotics from aqueous solutions.


Assuntos
Tetraciclina , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Cinética , Lignina , Tetraciclina/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Sensors (Basel) ; 21(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960403

RESUMO

Stress affects the microstructure of the material to influence the durability and service life of the components. However, the previous work of stress measurement lacks quantification of the different variations in time and spatial features of micromagnetic properties affected by stress in elastic and plastic ranges, as well as the evolution of microstructure. In this paper, microstructure evolution under stress in elastic and plastic ranges is evaluated by magnetic Barkhausen noise (MBN) transient analysis. Based on a J-A model, the duration and the intensity are the eigenvalues for MBN transient analysis to quantify transient size and number of Barkhausen events under stress. With the observation of domain wall (DW) distribution and microstructure, the correlation between material microstructure and MBN transient eigenvalues is investigated to verify the ability of material status evaluation on the microscopic scale of the method. The results show that the duration and the intensity have different change trends in elastic and plastic ranges. The eigenvalue fusion of the duration and intensity distinguishes the change in microstructure under the stress in elastic and plastic deformation. The appearance of grain boundary (GB) migration and dislocation under the stress in the plastic range makes the duration and the intensity higher on the GB than those inside the grain. Besides, the reproducibility of the proposed method is investigated by evaluating microstructure evolution for silicon steel sheet and Q235 steel sheet. The proposed method investigates the correlation between the microstructure and transient micromagnetic properties, which has the potential for stress evaluation in elastic and plastic ranges for industrial materials.


Assuntos
Plásticos , Aço , Fenômenos Magnéticos , Magnetismo , Reprodutibilidade dos Testes
3.
Environ Sci Technol ; 53(24): 14752-14760, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747513

RESUMO

The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.


Assuntos
Benzopiranos , Lignina , Carboidratos , Culinária
4.
Ecotoxicol Environ Saf ; 184: 109612, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31476450

RESUMO

Microplastics (MPs) are small plastic pieces with size less than 5 mm that have entered and polluted the environment. While many investigations including several critical reviews on MPs in the environment have been conducted, most of them are focused on their occurrences in marine environment. Current understanding on the occurrences, behaviors, and impacts of MPs in the terrestrial environment is far from complete. A systematic review of the literature was thus conducted to promote the research on MPs in the environment. This work is designed to provide a comprehensive overview that summarizes current knowledge and research findings on environmental occurrences, fate and transport, and impacts of MPs. In addition to discussing the occurrences, characteristics, and sources of MPs in the ocean, freshwater, sediments, soils, and atmosphere, the review also summarizes both the experimental and modeling data of the environmental fate and transport of MPs. Research findings on the toxic effects, bioaccumulation, and bioavailability of MPs in the environment are also covered in this critical review. Future perspectives are discussed as well.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Poluição Ambiental/análise , Microplásticos/análise , Disponibilidade Biológica , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Poluição Ambiental/efeitos adversos , Microplásticos/metabolismo , Microplásticos/toxicidade , Modelos Teóricos
5.
Inorg Chem ; 55(18): 9417-23, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27579781

RESUMO

Reaction of AgBr with TabHPF6 (TabH = 4-(trimethylammonio)benzenethiol) readily produces a unique one-dimensional coordination polymer [(TabH)(AgBr2)]n (1), consisting of anionic chains [AgBr2]n(n-) with hydrogen bonds to TabH(+) cations. By examining its electrical resistance and stability upon exposure to ammonia and seven common organic amines in water under ambient conditions, compound 1 is found to exhibit good stability and reproducibly high sensitivity toward these analytes at low concentrations. Especially, it can selectively detect NH3 in water with the detection limit as low as 0.05 ppm. This chemiresistive sensing system has the potential for highly efficient monitoring of ammonia and amines responsible for water pollution, eutrophication, food contamination, and industrial hazards.


Assuntos
Aminas/análise , Amônia/análise , Brometos/química , Polímeros/química , Prata/química , Poluentes Químicos da Água/análise , Cristalografia por Raios X , Impedância Elétrica , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/métodos , Limite de Detecção , Modelos Moleculares , Compostos de Sulfidrila/química , Água/análise
6.
Water Res ; 229: 119443, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509035

RESUMO

Effluent from wastewater treatment plants (WWTPs) has been regarded as one of the major contributors of nanoplastics (NPs) in the environment. Improving the performance of rapid sand filter (RSF) systems in WWTPs is thus in urgent need. In this study, granular limestone, a low-cost and abundant natural material, was integrated into RSF systems to enhance NP removal from water. Laboratory filtration columns packed with pure sand and limestone-amended sand were applied to remove polystyrene nanospheres (100 nm) from deionized water (DIW) and artificial wastewater (AWW) under different grain size and flow velocity conditions. Pure sand filter showed neglectable NP removal from DIW but much higher NP removal from AWW, especially when fine sand was employed. Limestone amended RSF had a significant improvement in the removal of NPs for all the tested conditions and the removal efficiency of NPs became greater with increasing amount of limestone in columns. The sensitivity of NP immobilization to flow velocity changed significantly with different combinations of filter and background solutions. Coupled effects of physical straining, electrostatic interaction, cation screening and bridging, and surface roughness controlled the retention behaviors of NPs in the columns. The higher removal efficiency of NPs by limestone can be mainly attributed to its chemical composition as well as its surface heterogeneity and roughness. Results of this study demonstrate that limestone can offer extensive application potential for enhancing the performance of RSF systems in WWTPs to remove NPs from wastewater.


Assuntos
Purificação da Água , Água , Águas Residuárias , Microplásticos , Carbonato de Cálcio , Poliestirenos , Filtração , Purificação da Água/métodos
7.
eGastroenterology ; 1(1)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37662449

RESUMO

Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.

8.
Int J Biol Macromol ; 224: 256-265, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257363

RESUMO

Bio-based controlled release fertilizers (BCRFs) are cost-effective and renewable thus gradually replacing petroleum-based controlled release fertilizers (CRFs). However, most of the study mainly focused on modifying BCRFs to improve controlled-release performance. It is necessary to further increase the functionality of BCRF for expanding the application. A multifunctional double layered bio-based CRF (DCRF) was prepared. Urea was used as the core of fertilizer, bio-based polyurethane was used as the inner coating, and sodium alginate and copper ions formed the hydrogel as the outer coating. In addition, mesoporous silica nanoparticles loaded with sodium selenate was used to modify the sodium alginate hydrogel (MSN@Se hydrogel). The results showed that the nitrogen longevity of the DCRF was much better than that of urea and BCRF. The selenium nutrient longevity of the DCRF was 40 h, much longer than that of sodium selenate. The DCRF improved the yield and nutritive value of cherry radish (Raphanus sativus L. var.radculus pers) with the elevated contents of selenium, an essential trace element. Moreover, the DCRF showed inhibitory effect on Fusarium oxysporum Schltdl. and could resist soil-borne fungal diseases continuously. Overall, this multifunctional fertilizer has great potential for expanding the use of BCRFs for sustainable development of agriculture.


Assuntos
Raphanus , Selênio , Poliuretanos , Fertilizantes/análise , Preparações de Ação Retardada , Antifúngicos , Ácido Selênico , Solo , Nitrogênio/análise , Ureia
9.
Nat Commun ; 14(1): 4651, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532727

RESUMO

Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.


Assuntos
Hevea , Hevea/genética , Borracha , Domesticação , Análise de Sequência de DNA , Genômica , Regulação da Expressão Gênica de Plantas
10.
Biomater Sci ; 10(8): 1883-1903, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35293402

RESUMO

Stimulus-responsive materials have been widely studied and applied in biomedical fields. Under the stimulation of enzymes, enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions. Herein, natural enzymes act as the endogenous trigger. Owing to the specificity of natural enzymes, ERMs can exert functions in the specific tissues containing these enzymes, while remaining inert in other tissues. This is beneficial for modulating the therapy efficacy and alleviating systemic or local toxicities in vivo when ERMs are used to deliver therapeutic molecules. This article focuses on introducing enzyme-responsive strategies, ERMs and their applications in cancer and cardiovascular disease diagnosis, therapy and theranostics. Enzyme-responsive strategies provide a promising research cue to construct intelligent biomaterials for disease treatment and diagnosis.


Assuntos
Materiais Biocompatíveis , Sinais (Psicologia) , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Estudos Prospectivos
11.
EMBO Mol Med ; 14(2): e14499, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927385

RESUMO

The development of eukaryote-derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces-sourced defensin-actinomycesin-that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate-type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA-induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti-infective drugs.


Assuntos
Anti-Infecciosos , Defensinas , Actinomyces , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Defensinas/farmacologia , Defensinas/uso terapêutico , Humanos , Camundongos
12.
J Mater Chem B ; 10(7): 1005-1018, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35089304

RESUMO

Human health damage and economic losses due to bacterial infections are very serious issues worldwide. Excessive use of antibiotics has caused an increase in bacterial resistance. Fortunately, various non-antibiotic antibacterial materials have been developed to treat bacterial infections without bacterial resistance. This review mainly introduces functional polymers with an intrinsic antibacterial ability and their applications in antibacterial drug delivery systems. The antibacterial strategies of polymer-based coatings include resisting bacterial adhesion and releasing bacterial debris. Their direct and assisted antibacterial effects are also discussed. The development of polymer-based antimicrobial drugs and coatings is prospected in this review.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Polímeros/uso terapêutico
13.
J Hazard Mater ; 424(Pt C): 127614, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740510

RESUMO

The coastal area is one of the key zones for transport and fate of microplastics (MPs). This study investigated the transport behaviors of different sized MPs in three water-saturated coastal soils, with the aim to explore effects of properties of three different coastal soils on the dispersion and migration of three-sized MPs (0.3, 0.5, and 1 µm). All three-sized MPs had the strongest dispersion in Soil 3 solution, followed by that in Soil 1 solution and then that in Soil 2 solution. The strongest dispersion of MPs in Soil 3 solution was attributed to the lowest ionic strength. Such a high dispersion favored MPs movement in soil solution but readily be sorbed and fixed by rich Fe and Al oxides in Soil 3 solid through strong electrostatic attraction, leading to the lowest transport rate (20.5-41.2%). The high ionic strength in the Soil 1 solution decreased the dispersion of MPs, but the presence of high content of humic acid enhanced the electrostatic repulsion and steric hindrance between MPs and soil particles, resulting in the highest transport ability of MPs in Soil 1 (39.4-72.5%). The large amount of dissolved Ca2+ and Mg2+ in Soil 2 solution favored MPs bridged with fulvic acid, resulting in the highest aggregation of MPs and relatively lower transport ability (34.1-49.6%). Large-sized MPs had higher electrostatic repulsion between the particles, thus increasing the dispersion and transport capacity of MPs in soil. Modeling showed the experiment-consistent results that Soil 3 had the lowest MPs transport after 600 mm of heavy rainfall, with the maximum migration distance of 7.50-10.5 cm, which was smaller than that in Soil 2 (8.10-12.0 cm) and that in Soil 1 (9.00-18.3 cm). These results indicated that MPs transport in coastal soil is significant and soil solution and solid composition plays an important role in the dispersion and transport of MPs, respectively. These findings afforded a great basis for the assessment of the fate and risk of MPs in coastal areas.


Assuntos
Microplásticos , Poluentes do Solo , Plásticos , Solo , Poluentes do Solo/análise , Água
14.
ACS Appl Mater Interfaces ; 14(50): 56046-56055, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484480

RESUMO

Bio-based polyurethanes are promising for the controlled release of nutrients and fertilizers, but their toughness and plasticity need to be improved. We developed a smooth, dense, elastic, and indestructible bio-based polyurethane (BPU) coating with a nutrient controlled release ∼150% superior, a tensile strength ∼300% higher, and a toughness ∼1200% higher than those for the original BPU coating. Through a one-step reaction of soybean oil polyols (accounting for more than 60%), isocyanate, and benzil dioxime, the dynamic covalent network based on oxime-carbamate replaces part of irreversible covalent cross-linking. The dynamic fracture-bonding reaction in the modified coating BPU can effectively promote the hydrogen bond recombination and oxime-carbamate chain migration in the coating process, which avoids the structural defects caused by coating tear and fertilizer collision. This work provides a simple and versatile strategy for building controlled-release fertilizer coatings.


Assuntos
Fertilizantes , Poliuretanos , Poliuretanos/química , Preparações de Ação Retardada/química , Isocianatos , Óleo de Soja/química
15.
Sci Total Environ ; 852: 158201, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028029

RESUMO

This review focuses on the removal of heavy metals from water by three-dimensional gels with carbon nanomaterials as the main building units. It highlights the fundamental knowledge, most recent advances, and future prospects of carbon nanomaterial-assembled gels (CNAGs) as effective adsorbents for heavy metals in water. Various synthesis methods of CNAGs including template-assisted, self-assembly and other methods are systematically summarized and evaluated. Adsorption performances of CNAGs to typical cationic and anionic heavy metals, especially lead, cadmium, mercury, chromium, and arsenic, are thoroughly examined and discussed in detail. These analyses bring out that composite CNAGs constructed from carbon nanomaterials with polymers or other engineered nanoparticles are the most promising adsorbents for heavy metal removal from water. Current challenges and future research directions that are critical to the applications of CNAGs in the removal of heavy metals from contaminated water are outlined at the end of the review.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Nanoestruturas , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Água , Carbono , Cádmio/análise , Metais Pesados/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Cromo/análise , Polímeros , Géis
16.
Chemosphere ; 309(Pt 1): 136480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162515

RESUMO

Salinity affects over 33% of irrigated farmland globally. Developing a low-cost, safe, and effective material as a soil salinity mitigation option would be of significant importance. This study proposed to synthesize a hydrogel using liquefied biomass from sugarcane bagasse, polyvinyl alcohol, and sodium tetraborate decahydrate. The effectiveness of the produced hydrogel in mitigating soil salinity was evaluated based on an incubation experiment at two salinity levels (5 and 10 dS m-1). The experiment was conducted by mixing liquefied hydrogel with soil at four application rates (0, 1, 2, and 3% w/w) with three replications. Porewater and soil samples were tested for pH and electrical conductivity (EC). Soil samples were also analyzed for selected cations and anions. The results demonstrated that hydrogel significantly reduced porewater EC at both 5 and 10 dS m-1 salt solutions. In addition, hydrogel reduced Cl-, P, Ca2+, and Al3+ concentrations in soil samples with maximum reductions observed from 3% hydrogel treatment. However, pH of porewater showed a consistent increase with hydrogel application. The application of hydrogel also increased NH4-N at high salt level. Overall, hydrogel has shown promising results in reducing soil salinity and could potentially be used as a soil amendment for saline soils.


Assuntos
Saccharum , Solo , Salinidade , Celulose , Biomassa , Hidrogéis , Álcool de Polivinil , Cloreto de Sódio , Cátions
17.
Environ Sci Technol ; 45(23): 10096-101, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22011255

RESUMO

Naturally occurring polymers such as organic matter have been known to inhibit aggregation and promote mobility of suspensions in soil environments by imparting steric stability. This increase in mobility can significantly reduce the water filtering capacity of soils, thus jeopardizing a primary function of the vadose zone. Improvements to classic filtration theory have been made to account for the known decrease in attachment efficiency of electrostatically stabilized particles, and more recently, of sterically stabilized particles traveling through simple and saturated porous media. In the absence of an established unsaturated transport expression, and in the absence of applicable theoretical approaches for suspensions with asymmetric and nonindifferent electrolytes, this study presents an empirical correlation to predict attachment efficiency (α) for electrosterically stabilized suspensions in unsaturated systems in the presence of nonideal electrolytes. We show that existing models fall short in estimating polymer-coated colloid deposition in unsaturated media. This deficiency is expected given that the models were developed for saturated conditions where the mechanisms controlling colloid deposition are significantly different. A new correlation is derived from unsaturated transport data and direct characterization of microspheres coated with natural organic matter over a range of pH and CaCl(2) concentrations. The improvements to existing transport models include the following: adjustment for a restricted liquid-phase in the medium, development of a quantitative term to account for unsaturated transport phenomena, and adjustments in the relative contribution of steric stability parameters based on direct measurements of the adsorbed polymer layer characteristics. Differences in model formulation for correlations designed for saturated systems and the newly proposed correlation for unsaturated systems are discussed, and the performance of the new model against a comprehensive set of experimental observations is evaluated.


Assuntos
Coloides/química , Compostos Orgânicos/química , Cloreto de Cálcio/química , Polímeros/química , Porosidade , Eletricidade Estática
18.
Chemosphere ; 276: 130214, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088096

RESUMO

Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media were elucidated via column experiments under a series combination of electrolytes, pH, and humic acid (HA) conditions. Fragmental PET microplastics showed low mobility in porous media with a small mass recovery rate (<50.1%) even under unfavorable retention conditions. The electrolyte, pH, and HA showed combined impact on PET microplastic transport. PET microplastics mobility was enhanced with decreasing electrolyte concentration, increasing pH, and increasing HA concentration. Basic properties (e.g. destiny and shape) of PET microplastics showed stronger effect on their transport behaviors in porous media rather than the experimental chemical conditions. In general, both environmental factors and basic properties played important roles in controlling the retention and transport of PET microplastics in porous media. A numerical model considering the second order kinetic deposition sites was applied to depict the retention and transport of PET microplastics in porous media. Model simulations well matched the experimental breakthrough curves. Given the fragmental PET microplastics have more realistic and irregular shapes, results from this study can improve present knowledge of the environmental fate and risk of microplastics in underground soil and water systems.


Assuntos
Microplásticos , Plásticos , Ácidos Ftálicos , Polietilenoglicóis , Porosidade
19.
J Hazard Mater ; 416: 125714, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492774

RESUMO

In the present work, the removal of fast sulphon black (FSB) dye from water was executed by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel (Ch-cl-poly(IA-co-AAm)-ZrW NCH). The Ch-cl-poly(IA-co-AAm)-ZrW NCH was fabricated proficiently by microwave-induced sol-gel/copolymrization method. The zirconium tungstate (ZrW) photocatalyst was prepared by co-precipitation method using sodium tungstate and zirconium oxychloride in ratio (2:1). The polymeric hydrogel part has been used to support the ZrW, and it acted as an adsorbent for adsorptive removal of FSB dye. The band gap for nanocomposite hydrogel was found about 4.18 eV by using Tauc equation. The Ch-cl-poly(IA-co-AAm)-ZrW NCH was characterized by various techniques as FTIR (Fourier-transform infrared spectroscopy), X-ray diffraction (XRD), transmittance electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The adsorptional-photocatalytic remediation experiment of FSB dye was optimized for reaction parameters as FSB dye and Ch-cl-poly(IA-co-AAm)-ZrW NCH concentration, and pH. The maximum percentage removal for FSB dye was observed at 92.66% in 120 min under adsorptional-photocatalysis condition.


Assuntos
Quitina , Nanocompostos , Acrilamida , Concentração de Íons de Hidrogênio , Nanogéis , Espectroscopia de Infravermelho com Transformada de Fourier , Succinatos , Compostos de Tungstênio , Zircônio
20.
J Mater Chem B ; 8(42): 9621-9641, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955058

RESUMO

Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.


Assuntos
Preparações de Ação Retardada/química , Técnicas de Transferência de Genes , Nanoestruturas/química , Polímeros/química , Animais , DNA/administração & dosagem , DNA/genética , Sistemas de Liberação de Medicamentos , Humanos , RNA/administração & dosagem , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA