Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biotechnol Lett ; 37(11): 2349-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26198849

RESUMO

OBJECTIVES: Bioprinting of bone and cartilage suffers from low mechanical properties. Here we have developed a unique inkjet bioprinting approach of creating mechanically strong bone and cartilage tissue constructs using poly(ethylene glycol) dimethacrylate, gelatin methacrylate, and human MSCs. RESULTS: The printed hMSCs were evenly distributed in the polymerized PEG-GelMA scaffold during layer-by-layer assembly. The procedure showed a good biocompatibility with >80% of the cells surviving the printing process and the resulting constructs provided strong mechanical support to the embedded cells. The printed mesenchymal stem cells showed an excellent osteogenic and chondrogenic differentiation capacity. Both osteogenic and chondrogenic differentiation as determined by specific gene and protein expression analysis (RUNX2, SP7, DLX5, ALPL, Col1A1, IBSP, BGLAP, SPP1, Col10A1, MMP13, SOX9, Col2A1, ACAN) was improved by PEG-GelMA in comparison to PEG alone. These observations were consistent with the histological evaluation. CONCLUSIONS: Inkjet bioprinted-hMSCs in simultaneously photocrosslinked PEG-GelMA hydrogel scaffolds demonstrated an improvement of mechanical properties and osteogenic and chondrogenic differentiation, suggesting its promising potential for usage in bone and cartilage tissue engineering.


Assuntos
Bioimpressão/métodos , Osso e Ossos/citologia , Cartilagem/citologia , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Adulto , Diferenciação Celular , Humanos , Hidrogéis/química , Masculino , Processos Fotoquímicos , Adulto Jovem
2.
J Nanosci Nanotechnol ; 21(3): 1413-1418, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404403

RESUMO

To prepare a nano-sized ultrasound contrast agent that specifically targets pancreatic cancer cells and to evaluate its targeting effect In Vitro. PLGA-PEG-NHS was synthesized using PLGA, NHS, and PEG and detected using 1H-NMR. PLGA-PEG-NHS and PFOB were used to prepare PLGA nano contrast agent coated with PFOB by emulsification and volatilization, and then a hedgehog antibody was conjugated. The morphology of the nano contrast agent was observed using a transmission electron microscope, and its particle size and potential were measured using the dynamic light scattering method. The entrapment and drug loading efficiency of the nano contrast agent was measured using gas chromatography-mass spectrometry. The In Vitro release characteristics of the nano contrast agent was measured using the dialysis method. Human pancreatic cancer cell lines SW1990 and CFPAC1 were cultured in medium containing the nano contrast agent. The targeting ability of the nano contrast agent was qualitatively and quantitatively verified using fluorescence microscopy and flow cytometry. The average particle size of the targeted ultrasound contrast agent was 198.9 nm, zeta potential was -31.8 mv, entrapment rate was 63.7±3.9%, drug loading efficiency was 14.3±0.9%, and drug release was 85.3% in 48 h. In Vitro cell experiments showed that the targeted ultrasound contrast agent strongly bound to SW1990 cells with high expression of hedgehog antigen, but no specific binding was detected in CFPAC-1 cells which lack the hedgehog antigen. The nano ultrasound contrast agent prepared by emulsification and volatilization method can be potentially used for the diagnosis of pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Meios de Contraste , Portadores de Fármacos , Proteínas Hedgehog , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Tamanho da Partícula , Polietilenoglicóis , Ultrassonografia
3.
Adv Healthc Mater ; 7(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193879

RESUMO

About 15 years ago, bioprinting was coined as one of the ultimate solutions to engineer vascularized tissues, which was impossible to accomplish using the conventional tissue fabrication approaches. With the advances of 3D-printing technology during the past decades, one may expect 3D bioprinting being developed as much as 3D printing. Unfortunately, this is not the case. The printing principles of bioprinting are dramatically different from those applied in industrialized 3D printing, as they have to take the living components into account. While the conventional 3D-printing technologies are actually applied for biological or biomedical applications, true 3D bioprinting involving direct printing of cells and other biological substances for tissue reconstruction is still in its infancy. In this progress report, the current status of bioprinting in academia and industry is subjectively evaluated. The progress made is acknowledged, and the existing bottlenecks in bioprinting are discussed. Recent breakthroughs from a variety of associated fields, including mechanical engineering, robotic engineering, computing engineering, chemistry, material science, cellular biology, molecular biology, system control, and medicine may overcome some of these current bottlenecks. For this to happen, a convergence of these areas into a systemic research area "3D bioprinting" is needed to develop bioprinting as a viable approach for creating fully functional organs for standard clinical diagnosis and treatment including transplantation.


Assuntos
Bioimpressão/métodos , Impressão Tridimensional , Animais , Materiais Biocompatíveis , Humanos , Engenharia Tecidual/métodos
4.
Biotechnol J ; 12(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28675678

RESUMO

Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone. In this review, the authors introduce the most popular techniques currently applied in bioprinting, as well as the various bioprinting processes. In addition, the composition of bioink including scaffolds and cells are described. Furthermore, the most current applications in organ and tissue bioprinting are introduced. The authors also discuss the challenges we are currently facing and the great potential of bioprinting. This technology has the capacity not only in complex tissue structure fabrication based on the converted medical images, but also as an efficient tool for drug discovery and preclinical testing. One of the most promising future advances of bioprinting is to develop a standard medical device with the capacity of treating patients directly on the repairing site, which requires the development of automation and robotic technology, as well as our further understanding of biomaterials and stem cell biology to integrate various printing mechanisms for multi-phasic tissue engineering.


Assuntos
Bioimpressão/tendências , Impressão Tridimensional/tendências , Medicina Regenerativa/tendências , Engenharia Tecidual/tendências , Materiais Biocompatíveis/química , Humanos , Células-Tronco/citologia , Alicerces Teciduais/química
5.
Biotechnol J ; 10(10): 1568-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25641582

RESUMO

Inkjet bioprinting is one of the most promising additive manufacturing approaches for tissue fabrication with the advantages of high speed, high resolution, and low cost. The limitation of this technology is the potential damage to the printed cells and frequent clogging of the printhead. Here we developed acrylated peptides and co-printed with acrylated poly(ethylene glycol) (PEG) hydrogel with simultaneous photopolymerization. At the same time, the bone marrow-derived human mesenchymal stem cells (hMSCs) were precisely printed during the scaffold fabrication process so the cells were delivered simultaneously with minimal UV exposure. The multiple steps of scaffold synthesis and cell encapsulation were successfully combined into one single step using bioprinting. The resulted peptide-conjugated PEG scaffold demonstrated excellent biocompatibility, with a cell viability of 87.9 ± 5.3%. Nozzle clogging was minimized due to the low viscosity of the PEG polymer. With osteogenic and chondrogenic differentiation, the bioprinted bone and cartilage tissue demonstrated excellent mineral and cartilage matrix deposition, as well as significantly increased mechanical properties. Strikingly, the bioprinted PEG-peptide scaffold dramatically inhibited hMSC hypertrophy during chondrogenic differentiation. Collectively, bioprinted PEG-peptide scaffold and hMSCs significantly enhanced osteogenic and chondrogenic differentiation for robust bone and cartilage formation with minimal printhead clogging.


Assuntos
Bioimpressão/métodos , Cartilagem/crescimento & desenvolvimento , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Desenvolvimento Ósseo/genética , Diferenciação Celular/genética , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos/química , Polietilenoglicóis/química , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais
6.
J Vis Exp ; (88)2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24961492

RESUMO

Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.


Assuntos
Cartilagem/crescimento & desenvolvimento , Condrócitos/citologia , Engenharia Tecidual/métodos , Cartilagem/citologia , Cartilagem/metabolismo , Colágeno Tipo II/biossíntese , Glicosaminoglicanos/biossíntese , Humanos , Hidrogéis/química , Processos Fotoquímicos , Polietilenoglicóis/química , Medicina Regenerativa
7.
Biotechnol J ; 9(10): 1304-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25130390

RESUMO

Bioprinting based on thermal inkjet printing is a promising but unexplored approach in bone tissue engineering. Appropriate cell types and suitable biomaterial scaffolds are two critical factors to generate successful bioprinted tissue. This study was undertaken in order to evaluate bioactive ceramic nanoparticles in stimulating osteogenesis of printed bone marrow-derived human mesenchymal stem cells (hMSCs) in poly(ethylene glycol)dimethacrylate (PEGDMA) scaffold. hMSCs suspended in PEGDMA were co-printed with nanoparticles of bioactive glass (BG) and hydroxyapatite (HA) under simultaneous polymerization so the printed substrates were delivered with highly accurate placement in three-dimensional (3D) locations. hMSCs interacted with HA showed the highest cell viability (86.62 ± 6.02%) and increased compressive modulus (358.91 ± 48.05 kPa) after 21 days in culture among all groups. Biochemical analysis showed the most collagen production and highest alkaline phosphatase activity in PEG-HA group, which is consistent with gene expression determined by quantitative PCR. Masson's trichrome staining also showed the most collagen deposition in PEG-HA scaffold. Therefore, HA is more effective comparing to BG for hMSCs osteogenesis in bioprinted bone constructs. Combining with our previous experience in vasculature, cartilage, and muscle bioprinting, this technology demonstrates the capacity for both soft and hard tissue engineering with biomimetic structures.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Adulto , Materiais Biocompatíveis/química , Células Cultivadas , Durapatita/química , Durapatita/farmacologia , Feminino , Vidro/química , Humanos , Hidrogéis , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/química , Metacrilatos/farmacologia , Processos Fotoquímicos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Engenharia Tecidual/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA