Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(5): 89, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426614

RESUMO

The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Etilenos , Humanos , Ácidos Ftálicos/metabolismo , Plásticos
2.
Ecotoxicol Environ Saf ; 198: 110658, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339926

RESUMO

Microplastics and dissolved organic matter (DOM) are ubiquitous in aquatic environments. The adsorption behavior of DOM on microplastics in aquatic environments is a prominent concern. In this study, the adsorption of two types of DOM, Suwannee River Humic Acid (HA) and Suwannee River Fulvic Acid (FA), on polystyrene microplastics (PSMPs, 10 µm) in aquatic environments was investigated. The adsorption of both HA and FA on PSMPs could be well described by using pseudo second-order and Freundlich models. The adsorption of HA and FA on PSMPs was low pH-dependent, particularly for FA adsorption. However, the elevated ionic strength slightly increased the adsorption of HA and FA on PSMPs. Based on Freundlich model, the site energy distribution of HA and FA adsorption on PSMPs under the experimental conditions were estimated. HA and FA first occupied the high-energy adsorption sites and then diffused to the low-energy adsorption sites on PSMPs. With higher site energies, HA demonstrated a much stronger adsorption affinity to PSMPs than FA. The adsorption site heterogeneity (σe*) on PSMPs under the experimental conditions were close. Hydrophobic interaction and π-π electron donor acceptor interaction acted simultaneously in the HA and FA adsorption on PSMPs. The results of this study suggested that the environmental behaviors of microplastics would be influenced by the amount and the type of DOM as well as solution chemistry.


Assuntos
Benzopiranos/análise , Substâncias Húmicas/análise , Microplásticos/química , Poliestirenos/química , Rios/química , Adsorção , Monitoramento Ambiental/métodos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Teóricos , Concentração Osmolar
3.
Int J Mol Sci ; 15(3): 5032-44, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24658444

RESUMO

The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA) was investigated by using density functional theory (DFT) molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p) level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT) theory with the small-curvature tunneling (SCT) correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM) theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180-370 K. The calculated results were in reasonable agreement with experimental measurement.


Assuntos
Radicais Livres/química , Radical Hidroxila/química , Metilmetacrilato/química , Nitratos/química , Algoritmos , Atmosfera/química , Cinética , Modelos Químicos , Estrutura Molecular , Oxirredução , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-39068869

RESUMO

In this study, high-performance liquid chromatography was used to determine four components of Shaoyao Gancao Decoction (SGD), and the effect of purification was evaluated using fingerprints, similarity analysis and cell experiments. An effective method for isolation and purification of SGD was established. The adsorption/desorption properties of SGD were evaluated using resin screening, isothermal analysis, adsorption kinetics, and dynamic adsorption-desorption experiments. It was shown that the Langmuir equation fitted the isotherm data well and that a pseudo-second-order model accurately described kinetic adsorption on AB-8 resin. Analysis of thermodynamic parameters showed that the adsorption process was exothermic. Under the optimal process conditions, the concentrations of albiflorin, paeoniflorin, liquiritin and ammonium glycyrrhizinate in the product were 73.05, 134.04, 45.04 and 75.00 mg/g, respectively. The yields of the four components were 71.89 %-86.19 %. Cell experiments showed that the purified SGD retained anti-inflammatory activity. This research lays the foundation for the separation and purification of SGD and subsequent preparation research.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Glucosídeos/isolamento & purificação , Glucosídeos/química , Monoterpenos/isolamento & purificação , Monoterpenos/química , Adsorção , Flavanonas/isolamento & purificação , Flavanonas/química , Flavanonas/análise , Animais , Ácido Glicirrízico/isolamento & purificação , Ácido Glicirrízico/química , Ácido Glicirrízico/análise , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/isolamento & purificação , Camundongos , Resinas Sintéticas/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Humanos , Células RAW 264.7
5.
Clin Case Rep ; 12(7): e9173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035121

RESUMO

Traumatic posterior atlantoaxial dislocation combined with Jefferson fracture and odontoid process fracture with vertebral artery injury is rare. The management of such injury raises controversial issues and is still open to debate. A 74-year-old Chinese male presented with sustained neck pain and stiffness after falling from height. The patient was neurologically intact. Preoperative radiographs demonstrated a Jefferson burst fracture with a posterior dislocation of the atlantoaxial joints and odontoid process Anderson and D'alonzo type II fracture. A computed tomography angiography (CTA) showed an occluded left vertebral artery. Coil embolization in the proximal portion of the occluded vertebral artery was performed to prevent further cerebral infarction due to distal embolization of the thrombus. Then a second stage occipito-cervical fusion was performed to reconstruct cervical spine stability. A systematic screening of blunt trauma vertebral artery injuries through CTA is required when dealing with upper cervical fracture. For cases with vertebral artery occlusion secondary to cervical spine injury, endovascular treatment preceding cervical spine surgery is a feasible and a safe treatment.

6.
Int J Nanomedicine ; 19: 787-803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293606

RESUMO

Background: Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, is a potential candidate for cancer chemotherapy. However, Tet has poor aqueous solubility and a short half-life, which limits its bioavailability and efficacy. Liposomes have been widely utilized to enhance the bioavailability and efficacy of drugs. Methods: In this study, Tet-loaded stealth liposomes (S-LPs@Tet) were prepared by ethanol injection method. Furthermore, physicochemical characterisation, biopharmaceutical behaviour, therapeutic efficacy, and biocompatibility of S-LPs@Tet were assessed. Results: The prepared S-LPs@Tet had an average particle size of 65.57 ± 1.60 nm, a surface charge of -0.61 ± 0.10 mV, and an encapsulation efficiency of 87.20% ± 1.30%. The S-LPs@Tet released Tet in a sustained manner, and the results demonstrated that the formulation remained stable for one month. More importantly, S-LPs significantly enhanced the inhibitory ability of Tet on the proliferation and migration of lung cancer cells, and enabled Tet to escape phagocytosis by immune cells. Furthermore, in vivo studies confirmed the potential for long-circulation and potent tumor-suppressive effects of S-LPs@Tet. Moreover, ex vivo and in vivo safety experiments demonstrated that the carrier material S-LPs exhibited superior biocompatibility. Conclusion: Our research suggested that S-LPs@Tet has potential applications in lung cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias Pulmonares , Humanos , Lipossomos , Lipopolissacarídeos , Benzilisoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
7.
Biomater Sci ; 12(11): 2930-2942, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38646699

RESUMO

Current mesh materials used for the clinical treatment of abdominal defects struggle to balance mechanical properties and bioactivity to support tissue remodeling. Therefore, a bioactive microgel-coated electrospinning membrane was designed with the superiority of cell-instructive topology in guiding cell behavior and function for abdominal wall defect reconstruction. The electrostatic spinning technique was employed to prepare a bioabsorbable PLCL fiber membrane with an effective mechanical support. Additionally, decellularized matrix (dECM)-derived bioactive microgels were further coated on the fiber membrane through co-precipitation with dopamine, which was expected to endow cell-instructive hydrophilic interfaces and topological morphologies for cell adhesion. Moreover, the introduction of the dECM into the microgel promoted the myogenic proliferation and differentiation of C2C12 cells. Subsequently, in vivo experiments using a rat abdominal wall defect model demonstrated that the bioactive microgel coating significantly contributed to the reconstruction of intact abdominal wall structures, highlighting its potential for clinical application in promoting the repair of soft tissue defects associated with abdominal wall damage. This study presented an effective mesh material for facilitating the reconstruction of abdominal wall defects and contributed novel design concepts for the surface modification of scaffolds with cell-instructive interfaces and topology.


Assuntos
Parede Abdominal , Animais , Parede Abdominal/cirurgia , Camundongos , Ratos , Microgéis/química , Linhagem Celular , Ratos Sprague-Dawley , Adesão Celular/efeitos dos fármacos , Membranas Artificiais , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Masculino , Engenharia Tecidual
8.
Adv Sci (Weinh) ; 11(2): e2305967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984880

RESUMO

Transcatheter intervention has been the preferred treatment for congenital structural heart diseases by implanting occluders into the heart defect site through minimally invasive access. Biodegradable polymers provide a promising alternative for cardiovascular implants by conferring therapeutic function and eliminating long-term complications, but inducing in situ cardiac tissue regeneration remains a substantial clinical challenge. PGAG (polydioxanone/poly (l-lactic acid)-gelatin-A5G81) occluders are prepared by covalently conjugating biomolecules composed of gelatin and layer adhesive protein-derived peptides (A5G81) to the surface of polydioxanone and poly (l-lactic acid) fibers. The polymer microfiber-biomacromolecule-peptide frame with biophysical and biochemical cues could orchestrate the biomaterial-host cell interactions, by recruiting endogenous endothelial cells, promoting their adhesion and proliferation, and polarizing immune cells into anti-inflammatory phenotypes and augmenting the release of reparative cytokines. In a porcine atrial septal defect (ASD) model, PGAG occluders promote in situ tissue regeneration by accelerating surface endothelialization and regulating immune response, which mitigate inflammation and fibrosis formation, and facilitate the fusion of occluder with surrounding heart tissue. Collectively, this work highlights the modulation of cell-biomaterial interactions for tissue regeneration in cardiac defect models, ensuring endothelialization and extracellular matrix remodeling on polymeric scaffolds. Bioinspired cell-material interface offers a highly efficient and generalized approach for constructing bioactive coatings on medical devices.


Assuntos
Gelatina , Dispositivo para Oclusão Septal , Animais , Suínos , Gelatina/química , Polidioxanona , Células Endoteliais , Polímeros , Materiais Biocompatíveis , Ácido Láctico , Peptídeos
9.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416780

RESUMO

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Materiais Biocompatíveis , Engenharia Celular , Transporte de Íons
10.
Front Pharmacol ; 15: 1351871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015370

RESUMO

Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.

11.
Small Methods ; 7(12): e2300422, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438327

RESUMO

Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.


Assuntos
Células Artificiais
12.
Environ Sci Pollut Res Int ; 30(60): 125370-125387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006478

RESUMO

Microplastics adsorb heavy metals and organic pollutants to produce combined pollution. Recently, the adsorption behavior of antibiotics on microplastics has received increasing attention. Exploring the sorption behavior of pollutants on microplastics is an important reference in understanding their ecological and environmental risk studies. In this paper, by reviewing the academic literature in recent years, we clarified the current status of research on the adsorption behavior of antibiotics on microplastics, discussed its potential hazards to ecological environment and human health, and summarized the influence of factors on the adsorption mechanisms. The results show that the adsorption behavior of antibiotics on microplastics is controlled by the physical and chemical properties of antibiotics, microplastics, and water environment. Antibiotics are adsorbed on microplastics through physical and chemical interactions, which include hydrophobic interaction, partitioning, electrostatic interaction, and other non-covalent interactions. Intensity of adsorption between them is mainly determined by their physicochemical properties. The basic physicochemical properties of the aqueous environment (e.g., pH, salinity, ionic strength, soluble organic matter content, and temperature) will affect the physicochemical properties of microplastics and antibiotics (e.g., particle size, state of dispersibility, and morphology), leading to differences in the type and strength of their interactions. This paper work is expected to provide a meaningful perspective for better understanding the potential impacts of antibiotic adsorption behavior of microplastics on aquatic ecology and human health. In the meantime, some indications for future related research are provided.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Microplásticos/química , Antibacterianos , Plásticos/química , Adsorção , Poluentes Químicos da Água/análise
13.
J Clin Med ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445490

RESUMO

Third molars, also known as wisdom teeth, are located in the most posterior of the tooth arch [...].

14.
Bioresour Technol ; 386: 129517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468015

RESUMO

The treatment and reuse of hygiene wastewater is crucial to "close the loop" in the controlled ecological life support system (CELSS), and to guarantee longer space missions or planetary habitation. In this work, anaerobic membrane bioreactor (AnMBR) was applied for hygiene wastewater treatment, focused on surfactant degradation and microbial community succession. The removal efficiency of COD and surfactants was 90%∼97% and 80% with a urine source-separation strategy. The microbial community gradually shifted from methanogens to sulfur-metabolizing and surfactant-degradation bacteria, such as Aeromonas. Sulfate was a surfactant degradation product, which triggered sulfate reduction and methane inhibition. The activated carbohydrate and sulfur metabolism were the key mechanism of the microbial process for the excellent performance of AnMBR. This study analyzed the degradation mechanism from the perspective of microbial mechanism, offers a solution for CELSS hygiene wastewater treatment, and supports the future improvement and refinement of AnMBR technology.


Assuntos
Microbiota , Purificação da Água , Eliminação de Resíduos Líquidos , Sistemas de Manutenção da Vida , Anaerobiose , Tensoativos , Higiene , Reatores Biológicos/microbiologia , Metano , Sulfatos , Membranas Artificiais , Esgotos
15.
Water Res ; 238: 120032, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146399

RESUMO

Mineral scaling is one key obstacle to membrane distillation in hypersaline wastewater desalination, but the scaling or fouling mechanism is poorly understood. Addressing this challenge required revealing the foulants layer formation process. In this work, the scaling process was deconstructed with a cascade strategy by stepwise changing the composition of the synthetic desulfurization wastewater. The flux decline curves presented a 3-stage mode in vacuum membrane distillation (VMD). Heterogeneous nucleation of CaMg(CO3)2, CaF2, and CaCO3 was the main incipient scaling mechanism. Mg-Si complex was the leading foulant in 2nd-stage, during which the scaling mechanism shifted from surface to bulk crystallization. The flux decreased sharply for the formation of a thick and compacted scaling layer by the bricklaying of CaSO4 and Mg-Si-BSA complexes in the 3rd-stage. Bulk crystallization was identified as the key scaling mechanism in VMD for the high salinity and concentration multiple. The organic matter had an anti-scaling effect by changing the bulk crystallization. Humic acids (HA) and colloidal silica also contributed to incipient scaling for the high affinity to membrane, bovine serum albumin (BSA) acting as the cement of Mg-Si complexes. Mg altered the Si scaling from polymerization to Mg-Si complex formation, which significantly influence the mixed scaling mechanism. This work deconstructed the mixed scaling process and illuminated the role of main foulants, filling in the knowledge gap on the mixed scaling mechanism in VMD for hypersaline wastewater treatment and recovery.


Assuntos
Águas Residuárias , Purificação da Água , Destilação , Vácuo , Membranas Artificiais
16.
Biomater Sci ; 11(19): 6573-6586, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37602380

RESUMO

Postoperative abdominal adhesion is a very common and serious complication, resulting in pain, intestinal obstruction and heavy economic burden. Post-injury inflammation that could activate the coagulation cascade and deposition of fibrin is a major cause of adhesion. Many physical barrier membranes are used to prevent abdominal adhesion, but their efficiency is limited due to the lack of anti-inflammatory activity. Here, an electrospinning membrane composed of poly(lactic-co-glycolic acid) (PLGA) providing support and mechanical strength and chondroitin sulfate (CS) conferring anti-inflammation activity is fabricated for preventing abdominal adhesion after injury. The PLGA/CS membrane shows a highly dense fiber network structure with improved hydrophilicity and good cytocompatibility. Importantly, the PLGA/CS membrane with a mass ratio of CS at 20% provides superior anti-adhesion efficiency over a native PLGA membrane and commercial poly(D, L-lactide) (PDLLA) film in abdominal adhesion trauma rat models. The mechanism is that the PLGA/CS membrane could alleviate the local inflammatory response as indicated by the promoted percentage of anti-inflammatory M2-type macrophages and decreased expression of pro-inflammatory factors, such as IL-1ß, TNF-α and IL-6, resulting in the suppression of the coagulation system and the activation of the fibrinolytic system. Furthermore, the deposition of fibrin at the abdominal wall was inhibited, and the damaged abdominal tissue was repaired with the treatment of the PLGA/CS membrane. Collectively, the PLGA/CS electrospinning membrane is a promising drug-/cytokine-free anti-inflammatory barrier for post-surgery abdominal adhesion prevention and a bioactive composite for tissue regeneration.


Assuntos
Sulfatos de Condroitina , Glicóis , Humanos , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Aderências Teciduais/prevenção & controle , Aderências Teciduais/metabolismo , Anti-Inflamatórios/farmacologia
17.
ACS Biomater Sci Eng ; 8(7): 2979-2994, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35666956

RESUMO

Although nanomedicine has demonstrated great potential for combating drug resistance, its suboptimal recognition of malignant cells and limited transport across multiple biological obstacles seriously impede the efficacious accumulation of drugs in tumor lesions, which strikingly limits its application in the clinical therapy of drug-resistant triple-negative breast cancer (TNBC). Hence, a surface-variable drug delivery vehicle based on the modification of liposomes with a multifunctional peptide (named EMC) was fabricated in this work and used for encapsulating doxorubicin and the p-glycoprotein inhibitor tariquidar. This EMC peptide contains an EGFR-targeting bullet that was screened from a "one-bead one-compound" combinatorial library, an MMP-2-cleaved substrate, and a cell-penetrating segment. The EGFR-targeting sequence has been validated to possess excellent specificity and affinity for EGFR at both the cellular and molecular levels and could be unloaded from the EMC peptide by MMP-2 in the tumor microenvironment. This doxorubicin/tariquidar-coloaded and peptide-functionalized liposome (DT-pLip) exhibited superior efficacy in tumor growth inhibition to drug-resistant TNBC both in vitro and in vivo through EGFR targeting, osmotic enhancement in response to MMP-2, controllable release, and inhibited efflux. Consequently, our systematic studies indicated the potential of this liposome-based nanoplatform in the therapy of drug-resistant TNBC through targeting effects and tumor microenvironment-triggered penetration enhancement.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipossomos , Metaloproteinase 2 da Matriz , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Humanos , Lipossomos/uso terapêutico , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
18.
Sci Rep ; 12(1): 8932, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624134

RESUMO

Microplastics (MPs), act as vectors of heavy metal pollutants in the environment, is of practical significance to study the adsorption process and mechanism on heavy metals. In this study, polystyrene microplastics (PSMPs) were used as model MPs to study the adsorption of Pb2+ on PSMPs and the effects of humic acid (HA) on the adsorption process. The results showed that HA promoted the adsorption of Pb2+ on PSMPs, and the higher the concentration of HA, the greater the adsorption of Pb2+. With the increase of pH value and decrease of ionic strength, the adsorption capacity of PSMPs for Pb2+ increased. The scanning electron microscope equipped with the energy dispersive spectroscope (SEM-EDS), fourier transform-infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that Pb2+ could be adsorbed directly onto PSMPs and also indirectly by HA. The higher KSV values in the PSMPs-HA-Pb2+ system than PSMPs-HA system by fluorescence analysis of HA suggested that HA acted as a bridging role in the adsorption of Pb2+ on PSMPs. The site energy distribution analysis further revealed that HA increased the average site energy µ(E*) and its standard deviation σe* of PSMPs by introducing more adsorption sites, thus enhanced the adsorption affinity of PSMPs. This study provided more thoughts and insights into the adsorption behavior and mechanism of MPs for Pb2+ in aquatic environments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Substâncias Húmicas/análise , Chumbo , Metais Pesados/química , Microplásticos , Plásticos , Poliestirenos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
19.
Anal Chim Acta ; 1199: 339563, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227376

RESUMO

The o-methoxyaniline (OMA) monomer was polymerized in-situ by vapor phase polymerization to form uniform and dense poly-o-methoxyaniline (POMA) film on the surface of ZnO nanorods array film which was pre-prepared by hydrothermal method. The as-prepared POMA/ZnO composite shows the best response at 40 min of vapor phase polymerization time. The response to 100 ppm ammonia at 25 °C is 8.88. The recovery time of 136 s has a certain advantage in the reported room temperature ammonia sensors. The lowest detectable concentration is as low as 0.01 ppm. The fast recovery time and low detection limit make the sensor have broad application prospects. In order to explore the response mechanism of POMA/ZnO composite to ammonia gas, the work function of POMA and ZnO and corresponding band gap energies were tested respectively. And the effect of the formation of p-n heterostructure on gas response was further explored. The actual application test results reflect that the sensor can effectively identify NH3 in the mixed gas during the production, storage and transportation of NH3. This can provide real-time early warning of NH3 leakage. Especially, the sensor can detect trace amount of NH3 in the human body's exhaled breath which is expected to realize the preliminary screening of patients with kidney disease through the detection of exhaled breath in the medical field.


Assuntos
Amônia , Óxido de Zinco , Compostos de Anilina , Humanos , Polimerização , Ácidos Polimetacrílicos , Temperatura , Óxido de Zinco/química
20.
Mol Biol Rep ; 38(8): 4855-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21161405

RESUMO

Glutathione S-transferases (GSTs) are a multifunctional super gene family, some of which play an important role in insecticide resistance. In this research, we used a real-time quantitative RT-PCR method, and a novel strategy, to measure the transcriptional level per gene copy using an exogenous RNA reference and DNA reference. The transcription levels of six BmGST genes in different tissues of fifth instar Bombyx mori larvae and their responses to insecticide and fluoride were investigated. The results show different levels and patterns of expression of the different BmGSTs in the various tissues observed. The BmGSTs can be induced by insecticide and fluoride, but their responses to each are different. The results of this research are helpful in studying the tissue-specific expression of BmGSTs in Bombyx mori, and in developing new pesticide resistant silkworm varieties.


Assuntos
Bombyx/enzimologia , Bombyx/genética , Regulação Enzimológica da Expressão Gênica , Genes de Insetos/genética , Glutationa Transferase/genética , Animais , Bombyx/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/enzimologia , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/enzimologia , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/metabolismo , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Túbulos de Malpighi/efeitos dos fármacos , Túbulos de Malpighi/enzimologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fluoreto de Sódio/farmacologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA