Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 829: 154571, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35304149

RESUMO

The combined toxic effects of nanoplastics and heavy metals on aquatic organisms have attracted widespread attention; however, the results are inconsistent and the mechanisms remain unclear. In this study, the single and combined toxicity effects of Cu and two types of polystyrene nanoplastics (PS-NPs; 50 nm PS and 55 nm PS-COOH) on Platymonas helgolandica var. tsingtaoensis were investigated, including growth inhibition, chlorophyll content, and oxidative stress. An adverse dose-response relationship on growth inhibition was found in the Cu treatment groups, which was related to the decrease in chlorophyll content and damage to cell membranes. The growth inhibitory effect of PS-NPs on microalgae increased with exposure time and concentration, and no significant difference was found in the two types of PS-NPs because of the negligible contribution of functional groups. A more significant increase in chlorophyll content was found in PS treatments than in PS-COOH treatments at 96 h because of the microscale aggregates formed by PS. Higher concentrations (≥ 50 mg/L) of PS-NPs caused membrane lipid peroxidation, which might be responsible for growth inhibition. In the combined exposure experiments, a synergistic effect on the growth inhibition rate was obtained using the independent action model and Abbott model. Combined exposure triggered more severe oxidative damage to the microalgae. Adsorption experiment results showed that there was no adsorption between PS-NPs and Cu, while the interaction of Cu and algal cells could be promoted due to the presence of the PS-NPs, which explained the increasing combined toxicity. This study could improve our understanding of the combined toxicity of nanoplastics and heavy metals and could provide a new explanation for the mechanism of combined toxicity.


Assuntos
Clorófitas , Microalgas , Nanopartículas , Poluentes Químicos da Água , Clorofila , Cobre/toxicidade , Microplásticos , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 797: 149180, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311354

RESUMO

The toxicity of microplastics to marine organisms has attracted much attention; however, studies of their effects on marine microalgae remain limited. Here, the effects of the single and combined toxicity of polystyrene (PS) and triphenyl phosphate (TPhP) on the cell growth, photosynthesis, and oxidative stress of Chaetoceros meülleri were investigated. PS inhibited growth of the algae cells and caused a dose-dependent effect on oxidative stress. The significantly high production of reactive oxygen species (ROS) induced severe cell membrane damage, as confirmed by high fluorescence polarization. However, there was no obvious decrease in chlorophyll a content, and 80 mg/L of PS significantly promoted chlorophyll a synthesis. The TPhP also inhibited cell growth, except at low concentrations (0.2-0.8 mg/L), which stimulated algae growth over 48 h. Moreover, no obvious decrease in chlorophyll a and maximal photochemical efficiency of PSII was found in the TPhP experimental groups except for 3.2 mg/L TPhP, where the rapid light curves showed a significantly reduced photosynthetic capacity of algae. In addition, TPhP caused high ROS levels at 96 h, resulting in cell membrane damage. Using the additive index and independent action methods, the combined toxic effects of PS and TPhP on the algae were evaluated as antagonistic; however, cell membrane damage caused by high ROS levels was still noticeable. This study has shown the potential toxicity of PS and TPhP to marine microalgae, and provided insights into the combined risk assessment of TPhP and microplastics in the marine environment.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Clorofila A , Organofosfatos , Estresse Oxidativo , Fotossíntese , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA