Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomater Adv ; 150: 213426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104961

RESUMO

Acquired muscle diseases such as cancer cachexia are responsible for the poor prognosis of many patients suffering from cancer. In vitro models are needed to study the underlying mechanisms of those pathologies. Extrusion bioprinting is an emerging tool to emulate the aligned architecture of fibers while implementing additive manufacturing techniques in tissue engineering. However, designing bioinks that reconcile the rheological needs of bioprinting and the biological requirements of muscle tissue is a challenging matter. Here we formulate a biomaterial with dual crosslinking to modulate the physical properties of bioprinted models. We design 3D bioprinted muscle models that resemble the mechanical properties of native tissue and show improved proliferation and high maturation of differentiated myotubes suggesting that the GelMA-AlgMA-Fibrin biomaterial possesses myogenic properties. The electrical stimulation of the 3D model confirmed the contractile capability of the tissue and enhanced the formation of sarcomeres. Regarding the functionality of the models, they served as platforms to recapitulate skeletal muscle diseases such as muscle wasting produced by cancer cachexia. The genetic expression of 3D models demonstrated a better resemblance to the muscular biopsies of cachectic mouse models. Altogether, this biomaterial is aimed to fabricate manipulable skeletal muscle in vitro models in a non-costly, fast and feasible manner.


Assuntos
Caquexia , Neoplasias , Camundongos , Animais , Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Materiais Biocompatíveis
2.
Sci Rep ; 10(1): 6370, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286364

RESUMO

Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young's modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.


Assuntos
Módulo de Elasticidade , Hidrogéis , Neuroblastoma/patologia , Microambiente Tumoral , Animais , Apoptose , Materiais Biocompatíveis , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Modelos Teóricos , Neuroblastoma/metabolismo , RNA Mensageiro/metabolismo , Alicerces Teciduais
3.
Macromol Biosci ; 18(10): e1800167, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156756

RESUMO

New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Hidrogéis/química , Fibras Musculares Esqueléticas/metabolismo , Impressão Tridimensional , Alicerces Teciduais/química , Alginatos/química , Animais , Linhagem Celular , Gelatina/química , Camundongos , Fibras Musculares Esqueléticas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA